DOI QR코드

DOI QR Code

ON THE g-CIRCULANT MATRICES

  • Bahsi, Mustafa (Aksaray University Education Faculty) ;
  • Solak, Suleyman (N. E. University A. K. Education Faculty)
  • Received : 2017.06.09
  • Accepted : 2018.02.01
  • Published : 2018.07.31

Abstract

In this paper, firstly we compute the spectral norm of g-circulant matrices $C_{n,g}=g-Circ(c_0,c_1,{\cdots},c{_{n-1}})$, where $c_i{\geq}0$ or $c_i{\leq}0$ (equivalently $c_i{\cdot}c_j{\geq}0$). After, we compute the spectral norms, determinants and inverses of the g-circulant matrices with the Fibonacci and Lucas numbers.

Keywords

circulant matrix;g-circulant matrix;Fibonacci number;Lucas number;spectral norm;determinant;inverse

References

  1. M. Akbulak and D. Bozkurt, On the norms of Toeplitz matrices involving Fibonacci and Lucas numbers, Hacet. J. Math. Stat. 37 (2008), no. 2, 89-95.
  2. M. Bahsi and S. Solak, On the circulant matrices with arithmetic sequence, Int. J. Contemp. Math. Sci. 5 (2010), no. 25-28, 1213-1222.
  3. M. Benoumhani, A sequence of binomial coefficients related to Lucas and Fibonacci numbers, J. Integer Seq. 6 (2003), no. 2, Article 03.2.1, 10 pp.
  4. A. Bose, S. Guha, R. S. Hazra, and K. Saha, Circulant type matrices with heavy tailed entries, Statist. Probab. Lett. 81 (2011), no. 11, 1706-1716. https://doi.org/10.1016/j.spl.2011.07.001
  5. A. Bose, R. S. Hazra, and K. Saha, Spectral norm of circulant-type matrices, J. Theoret. Probab. 24 (2011), no. 2, 479-516. https://doi.org/10.1007/s10959-009-0257-z
  6. A. Bose, R. S. Hazra, and K. Saha, Poisson convergence of eigenvalues of circulant type matrices, Extremes 14 (2011), no. 4, 365-392. https://doi.org/10.1007/s10687-010-0115-5
  7. D. Bozkurt and T.-Y. Tam, Determinants and inverses of circulant matrices with Jacob- sthal and Jacobsthal-Lucas Numbers, Appl. Math. Comput. 219 (2012), no. 2, 544-551. https://doi.org/10.1016/j.amc.2012.06.039
  8. P. J. Davis, Circulant Matrices, John Wiley & Sons, New York, 1979.
  9. A. Ipek, On the spectral norms of circulant matrices with classical Fibonacci and Lucas numbers entries, Appl. Math. Comput. 217 (2011), no. 12, 6011-6012. https://doi.org/10.1016/j.amc.2010.12.094
  10. H. Karner, J. Schneid, and C. W. Ueberhuber, Spectral decomposition of real circulant matrices, Linear Algebra Appl. 367 (2003), 301-311. https://doi.org/10.1016/S0024-3795(02)00664-X
  11. E. Kilic and D. Tasci, On the generalized order−k Fibonacci and Lucas numbers, Rocky Mountain J. Math. 36 (2006), no. 6, 1915-1926. https://doi.org/10.1216/rmjm/1181069352
  12. T. Koshy, Fibonacci and Lucas Numbers with Applications, Pure and Applied Mathematics (New York), Wiley-Interscience, New York, 2001.
  13. S. L. Ma and W. C. Waterhouse, The g-circulant solutions of $A^m\;=\;{\lambda}J$, Linear Algebra Appl. 85 (1987), 211-220. https://doi.org/10.1016/0024-3795(87)90218-7
  14. E. Ngondiep, S. Serra-Capizzano, and D. Sesana, Spectral features and asymptotic properties for g-circulants and g-Toeplitz sequences, SIAM J. Matrix Anal. Appl. 31 (2009/10), no. 4, 1663-1687. https://doi.org/10.1137/090760209
  15. A. A. Ocal, N. Tuglu, and E. Altinsik, On the representation of k-generalized Fibonacci and Lucas numbers, Appl. Math. Comput. 170 (2005), no. 1, 584-596. https://doi.org/10.1016/j.amc.2004.12.009
  16. S.-Q. Shen, J.-M. Cen, and Y. Hao, On the determinants and inverses of circulant matrices with Fibonacci and Lucas numbers, Appl. Math. Comput. 217 (2011), no. 23, 9790-9797. https://doi.org/10.1016/j.amc.2011.04.072
  17. S. Solak, On the norms of circulant matrices with the Fibonacci and Lucas numbers, Appl. Math. Comput. 160 (2005), no. 1, 125-132. https://doi.org/10.1016/j.amc.2003.08.126
  18. S. Solak, Erratum to: "On the norms of circulant matrices with the Fibonacci and Lucas numbers" [Appl. Math. Comput. 160 (2005), no. 1, 125-132], Appl. Math. Comput. 190 (2007), no. 2, 1855-1856.
  19. S. Solak and M. Bahsi, On the spectral norms of Hankel matrices with Fibonacci and Lucas numbers, Selcuk J. Appl. Math. 12 (2011), no. 1, 71-76.
  20. S. Solak, On the spectral norms of Toeplitz matrices with Fibonacci and Lucas numbers, Hacet. J. Math. Stat. 42 (2013), no. 1, 15-19.
  21. D. Tasci and E. Kilic, On the order-k generalized Lucas numbers, Appl. Math. Comput. 155 (2004), no. 3, 637-641. https://doi.org/10.1016/S0096-3003(03)00804-X
  22. K. Wang, On the g-circulant solutions to the matrix equation $A^m\;=\;{\lambda}J$, J. Combin. Theory Ser. A 33 (1982), no. 3, 287-296. https://doi.org/10.1016/0097-3165(82)90041-3
  23. Y.-K. Wu, R.-Z. Jia, and Q. Li, g-circulant solutions to the (0, 1) matrix equation $A^m\;=\;J_n$, Linear Algebra Appl. 345 (2002), 195-224. https://doi.org/10.1016/S0024-3795(01)00491-8
  24. J. Zhou and Z. Jiang, The spectral norms of g-circulant matrices with classical Fibonacci and Lucas numbers entries, Appl. Math. Comput. 233 (2014), 582-587.