DOI QR코드

DOI QR Code

ON THE g-CIRCULANT MATRICES

  • 투고 : 2017.06.09
  • 심사 : 2018.02.01
  • 발행 : 2018.07.31

초록

In this paper, firstly we compute the spectral norm of g-circulant matrices $C_{n,g}=g-Circ(c_0,c_1,{\cdots},c{_{n-1}})$, where $c_i{\geq}0$ or $c_i{\leq}0$ (equivalently $c_i{\cdot}c_j{\geq}0$). After, we compute the spectral norms, determinants and inverses of the g-circulant matrices with the Fibonacci and Lucas numbers.

참고문헌

  1. M. Akbulak and D. Bozkurt, On the norms of Toeplitz matrices involving Fibonacci and Lucas numbers, Hacet. J. Math. Stat. 37 (2008), no. 2, 89-95.
  2. M. Bahsi and S. Solak, On the circulant matrices with arithmetic sequence, Int. J. Contemp. Math. Sci. 5 (2010), no. 25-28, 1213-1222.
  3. M. Benoumhani, A sequence of binomial coefficients related to Lucas and Fibonacci numbers, J. Integer Seq. 6 (2003), no. 2, Article 03.2.1, 10 pp.
  4. A. Bose, S. Guha, R. S. Hazra, and K. Saha, Circulant type matrices with heavy tailed entries, Statist. Probab. Lett. 81 (2011), no. 11, 1706-1716. https://doi.org/10.1016/j.spl.2011.07.001
  5. A. Bose, R. S. Hazra, and K. Saha, Spectral norm of circulant-type matrices, J. Theoret. Probab. 24 (2011), no. 2, 479-516. https://doi.org/10.1007/s10959-009-0257-z
  6. A. Bose, R. S. Hazra, and K. Saha, Poisson convergence of eigenvalues of circulant type matrices, Extremes 14 (2011), no. 4, 365-392. https://doi.org/10.1007/s10687-010-0115-5
  7. D. Bozkurt and T.-Y. Tam, Determinants and inverses of circulant matrices with Jacob- sthal and Jacobsthal-Lucas Numbers, Appl. Math. Comput. 219 (2012), no. 2, 544-551. https://doi.org/10.1016/j.amc.2012.06.039
  8. P. J. Davis, Circulant Matrices, John Wiley & Sons, New York, 1979.
  9. A. Ipek, On the spectral norms of circulant matrices with classical Fibonacci and Lucas numbers entries, Appl. Math. Comput. 217 (2011), no. 12, 6011-6012. https://doi.org/10.1016/j.amc.2010.12.094
  10. H. Karner, J. Schneid, and C. W. Ueberhuber, Spectral decomposition of real circulant matrices, Linear Algebra Appl. 367 (2003), 301-311. https://doi.org/10.1016/S0024-3795(02)00664-X
  11. E. Kilic and D. Tasci, On the generalized order−k Fibonacci and Lucas numbers, Rocky Mountain J. Math. 36 (2006), no. 6, 1915-1926. https://doi.org/10.1216/rmjm/1181069352
  12. T. Koshy, Fibonacci and Lucas Numbers with Applications, Pure and Applied Mathematics (New York), Wiley-Interscience, New York, 2001.
  13. S. L. Ma and W. C. Waterhouse, The g-circulant solutions of $A^m\;=\;{\lambda}J$, Linear Algebra Appl. 85 (1987), 211-220. https://doi.org/10.1016/0024-3795(87)90218-7
  14. E. Ngondiep, S. Serra-Capizzano, and D. Sesana, Spectral features and asymptotic properties for g-circulants and g-Toeplitz sequences, SIAM J. Matrix Anal. Appl. 31 (2009/10), no. 4, 1663-1687. https://doi.org/10.1137/090760209
  15. A. A. Ocal, N. Tuglu, and E. Altinsik, On the representation of k-generalized Fibonacci and Lucas numbers, Appl. Math. Comput. 170 (2005), no. 1, 584-596. https://doi.org/10.1016/j.amc.2004.12.009
  16. S.-Q. Shen, J.-M. Cen, and Y. Hao, On the determinants and inverses of circulant matrices with Fibonacci and Lucas numbers, Appl. Math. Comput. 217 (2011), no. 23, 9790-9797. https://doi.org/10.1016/j.amc.2011.04.072
  17. S. Solak, On the norms of circulant matrices with the Fibonacci and Lucas numbers, Appl. Math. Comput. 160 (2005), no. 1, 125-132. https://doi.org/10.1016/j.amc.2003.08.126
  18. S. Solak, Erratum to: "On the norms of circulant matrices with the Fibonacci and Lucas numbers" [Appl. Math. Comput. 160 (2005), no. 1, 125-132], Appl. Math. Comput. 190 (2007), no. 2, 1855-1856.
  19. S. Solak and M. Bahsi, On the spectral norms of Hankel matrices with Fibonacci and Lucas numbers, Selcuk J. Appl. Math. 12 (2011), no. 1, 71-76.
  20. S. Solak, On the spectral norms of Toeplitz matrices with Fibonacci and Lucas numbers, Hacet. J. Math. Stat. 42 (2013), no. 1, 15-19.
  21. D. Tasci and E. Kilic, On the order-k generalized Lucas numbers, Appl. Math. Comput. 155 (2004), no. 3, 637-641. https://doi.org/10.1016/S0096-3003(03)00804-X
  22. K. Wang, On the g-circulant solutions to the matrix equation $A^m\;=\;{\lambda}J$, J. Combin. Theory Ser. A 33 (1982), no. 3, 287-296. https://doi.org/10.1016/0097-3165(82)90041-3
  23. Y.-K. Wu, R.-Z. Jia, and Q. Li, g-circulant solutions to the (0, 1) matrix equation $A^m\;=\;J_n$, Linear Algebra Appl. 345 (2002), 195-224. https://doi.org/10.1016/S0024-3795(01)00491-8
  24. J. Zhou and Z. Jiang, The spectral norms of g-circulant matrices with classical Fibonacci and Lucas numbers entries, Appl. Math. Comput. 233 (2014), 582-587.