DOI QR코드

DOI QR Code

HOMOTOPY MINIMAL PERIODS OF MAPS ON THE KLEIN BOTTLE

  • Lee, Jong Bum (Department of Mathematics Sogang University)
  • Received : 2017.07.21
  • Accepted : 2017.10.26
  • Published : 2018.07.31

Abstract

We determine the sets of homotopy minimal periods of all self-maps on the Klein bottle by using a single formula for homotopy minimal periods of maps on the infra-solvmanifolds of type (R). This provides an alternate but an easy proof for the main results of [12].

Keywords

homotopy minimal period;infra-solvmanifold;Klein bottle

Acknowledgement

Supported by : National Research Foundation of Korea(NRF)

References

  1. L. Block, J. Guckenheimer, M. Misiurewicz, and L. S. Young, Periodic points and topological entropy of one-dimensional maps, in Global theory of dynamical systems (Proc. Internat. Conf., Northwestern Univ., Evanston, Ill., 1979), 18-34, Lecture Notes in Math., 819, Springer, Berlin, 1980.
  2. A. Fel'shtyn and J. B. Lee, The Nielsen and Reidemeister numbers of maps on infra-solvmanifolds of type (R), Topology Appl. 181 (2015), 62-103. https://doi.org/10.1016/j.topol.2014.12.003
  3. J. W. Hoffman, Z. Liang, Y. Sakai, and X. Zhao, Homotopy minimal period self-maps on flat manifolds, Adv. Math. 248 (2013), 324-334. https://doi.org/10.1016/j.aim.2013.08.009
  4. G. J. O. Jameson, The cyclotomic polynomials, http://www.maths.lancs.ac.uk/jameson.
  5. J. Jezierski, J. Kedra, and W. Marzantowicz, Homotopy minimal periods for NR-solvmanifolds maps, Topology Appl. 144 (2004), no. 1-3, 29-49. https://doi.org/10.1016/j.topol.2004.02.018
  6. J. Jezierski, E. Keppelmann, and W. Marzantowicz, Wecken property for periodic points on the Klein bottle, Topol. Methods Nonlinear Anal. 33 (2009), no. 1, 51-64. https://doi.org/10.12775/TMNA.2009.005
  7. J. Jezierski and W. Marzantowicz, Homotopy minimal periods for nilmanifold maps, Math. Z. 239 (2002), no. 2, 381-414. https://doi.org/10.1007/s002090100303
  8. J. Jezierski, Homotopy minimal periods for maps of three-dimensional nilmanifolds, Pacific J. Math. 209 (2003), no. 1, 85-101. https://doi.org/10.2140/pjm.2003.209.85
  9. B. Jiang and J. Llibre, Minimal sets of periods for torus maps, Discrete Contin. Dynam. Systems 4 (1998), no. 2, 301-320. https://doi.org/10.3934/dcds.1998.4.301
  10. J. H. Jo and J. B. Lee, Nielsen type numbers and homotopy minimal periods for maps on solvmanifolds with Sol41-geometry, Fixed Point Theory Appl. 2015 (2015), 175, 15 pp. https://doi.org/10.1186/s13663-015-0264-y
  11. H. J. Kim, J. B. Lee, and W. S. Yoo, Computation of the Nielsen type numbers for maps on the Klein bottle, J. Korean Math. Soc. 45 (2008), no. 5, 1483-1503. https://doi.org/10.4134/JKMS.2008.45.5.1483
  12. J. Y. Kim, S. S. Kim, and X. Zhao, Minimal sets of periods for maps on the Klein bottle, J. Korean Math. Soc. 45 (2008), no. 3, 883-902. https://doi.org/10.4134/JKMS.2008.45.3.883
  13. J. B. Lee and K. B. Lee, Lefschetz numbers for continuous maps, and periods for expanding maps on infra-nilmanifolds, J. Geom. Phys. 56 (2006), no. 10, 2011-2023. https://doi.org/10.1016/j.geomphys.2005.11.003
  14. J. B. Lee and X. Zhao, Homotopy minimal periods for expanding maps on infra-nilmanifolds, J. Math. Soc. Japan 59 (2007), no. 1, 179-184. https://doi.org/10.2969/jmsj/1180135506
  15. J. B. Lee, Nielsen type numbers and homotopy minimal periods for maps on the 3-nilmanifolds, Sci. China Ser. A 51 (2008), no. 3, 351-360. https://doi.org/10.1007/s11425-008-0003-5
  16. J. B. Lee, Nielsen type numbers and homotopy minimal periods for maps on 3-solvmanifolds, Algebr. Geom. Topol. 8 (2008), no. 1, 563-580. https://doi.org/10.2140/agt.2008.8.563
  17. J. B. Lee, Density of the homotopy minimal periods of maps on infra-solvmanifolds of type (R), J. Korean Math. Soc. 55 (2018), no. 2, 293-311. https://doi.org/10.4134/JKMS.J170189
  18. K. B. Lee, Maps on infra-nilmanifolds, Pacific J. Math. 168 (1995), no. 1, 157-166. https://doi.org/10.2140/pjm.1995.168.157
  19. Z. Liang and X. Zhao, Self-maps on flat manifolds with infinitely many periods, Discrete Contin. Dyn. Syst. 32 (2012), no. 6, 2223-2232. https://doi.org/10.3934/dcds.2012.32.2223
  20. J. Llibre, A note on the set of periods for Klein bottle maps, Pacific J. Math. 157 (1993), no. 1, 87-93. https://doi.org/10.2140/pjm.1993.157.87
  21. O. M. Sarkovs'kii, Co-existence of cycles of a continuous mapping of the line into itself, Ukrain. Mat. Z. 16 (1964), 61-71.