• Dong, Yongpeng (School of Mathematics China University of Mining and Technology) ;
  • Fan, Shengjun (School of Mathematics China University of Mining and Technology)
  • Received : 2017.07.24
  • Accepted : 2017.11.07
  • Published : 2018.07.31


This paper is devoted to the existence and uniqueness of $L^p$ (p > 1) solutions for general time interval multidimensional backward stochastic differential equations (BSDEs for short), where the generator g satisfies a ($p{\wedge}2$)-order weak monotonicity condition in y and a Lipschitz continuity condition in z, both non-uniformly in t. The corresponding stability theorem and comparison theorem are also proved.


Supported by : Central Universities


  1. C. Bender and M. Kohlmann, BSDEs with stochastic Lipschitz condition,, 2000.
  2. P. Briand, B. Delyon, Y. Hu, E. Pardoux, and L. Stoica, $L^p$ solutions of backward stochastic differential equations, Stochastic Process. Appl. 108 (2003), no. 1, 109-129.
  3. P. Briand and R. Elie, A simple constructive approach to quadratic BSDEs with or without delay, Stochastic Process. Appl. 123 (2013), no. 8, 2921-2939.
  4. P. Briand and Y. Hu, Quadratic BSDEs with convex generators and unbounded terminal conditions, Probab. Theory Related Fields 141 (2008), no. 3-4, 543-567.
  5. Z. J. Chen, Existence of solutions to backward stochastic differential equations with stopping times, Kexue Tongbao (Chinese) 42 (1997), no. 22, 2379-2382.
  6. Z. Chen and B. Wang, Infinite time interval BSDEs and the convergence of g-martingales, J. Aust. Math. Soc. Ser. A 69 (2000), no. 2, 187-211.
  7. F. Delbaen, Y. Hu, and A. Richou, On the uniqueness of solutions to quadratic BSDEs with convex generators and unbounded terminal conditions, Ann. Inst. Henri Poincare Probab. Stat. 47 (2011), no. 2, 559-574.
  8. S. Fan, $L^p$ solutions of multidimensional BSDEs with weak monotonicity and general growth generators, J. Math. Anal. Appl. 432 (2015), no. 1, 156-178.
  9. S. Fan, Bounded solutions, $L^p\;(p > 1)$ solutions and $L^1$ solutions for one dimensional BSDEs under general assumptions, Stochastic Process. Appl. 126 (2016), no. 5, 1511-1552.
  10. S. Fan and L. Jiang, Uniqueness result for the BSDE whose generator is monotonic in y and uniformly continuous in z, C. R. Math. Acad. Sci. Paris 348 (2010), no. 1-2, 89-92.
  11. S. Fan, $L^p$ solutions of finite and infinite time interval BSDEs with non-Lipschitz coefficients, Stochastics 84 (2012), no. 4, 487-506.
  12. S. Fan, L. Jiang, and D. Tian, One-dimensional BSDEs with finite and infinite time horizons, Stochastic Process. Appl. 121 (2011), no. 3, 427-440.
  13. Y. Hu and S. Tang, Multi-dimensional backward stochastic differential equations of diagonally quadratic generators, Stochastic Process. Appl. 126 (2016), no. 4, 1066-1086.
  14. M. Kobylanski, Backward stochastic differential equations and partial differential equations with quadratic growth, Ann. Probab. 28 (2000), no. 2, 558-602.
  15. J.-F. Le Gall, Mouvement brownien, martingales et calcul stochastique, Mathematiques & Applications (Berlin), 71, Springer, Heidelberg, 2013.
  16. J. P. Lepeltier and J. San Martin, Backward stochastic differential equations with continuous coefficient, Statist. Probab. Lett. 32 (1997), no. 4, 425-430.
  17. J. P. Lepeltier, Existence for BSDE with superlinear-quadratic coefficient, Stochastics Stochastics Rep. 63 (1998), no. 3-4, 227-240.
  18. Y. Liu, D. Li, and S. Fan, $L^{p}$ (p > 1) solutions of BSDEs with generators satisfying some non-uniform conditions in t and ${\omega}$, arXiv: 1603.00259v1 [math. PR] 1 Mar 2016.
  19. Pardoux and S. G. Peng, Adapted solution of a backward stochastic differential equation, Systems Control Lett. 14 (1990), no. 1, 55-61.
  20. L. Xiao and S. Fan, General time interval BSDEs under the weak monotonicity condition and nonlinear decomposition for general g-supermartingales, Stochastics 89 (2017), no. 5, 786-816.