• Ghayasuddin, Mohd (Department of Mathematics Integral University) ;
  • Khan, Nabiullah (Department of Applied Mathematics Aligarh Muslim University) ;
  • Khan, Shorab Wali (Department of Applied Mathematics Aligarh Muslim University)
  • Received : 2017.06.05
  • Accepted : 2017.09.26
  • Published : 2018.07.31


The main object of this paper is to set up two (conceivably) valuable double integrals including the multiplication of Bessel function with Jacobi and Laguerre polynomials, which are given in terms of Srivastava and Daoust functions. By virtue of the most broad nature of the function included therein, our primary findings are equipped for yielding an extensive number of (presumably new) fascinating and helpful results involving orthogonal polynomials, Whittaker functions, sine and cosine functions.


Whittaker function;Jacobi polynomial;Laguerre polynomial;Bessel function


  1. M. S. Abouzaid, A. H. Abusufian, and K. S. Nisar, Some unified integrals associated with generalized Bessel-Maitland function, Int. Bull. Math. Research 3 (2016), Issue-1, 18-23.
  2. P. Agarwal and J. Choi, Certain fractional integral inequalities associated with pathway fractional integral operators, Bull. Korean Math. Soc. 53 (2016), no. 1, 181-193.
  3. P. Agarwal, S. Jain, S. Agarwal, and M. Nagpal, On a new class of integrals involving Bessel functions of the first kind, Commun. Numer. Anal. 2014 (2014), Art. ID 00216, 7 pp.
  4. S. Ali, On some new unified integrals, Adv. Comput. Math. Appl. 1 (2012), 151-153.
  5. Y. A. Brychkov, Handbook of Special Functions, CRC Press, Boca Raton, FL, 2008.
  6. J. Choi and P. Agarwal, Certain unified integrals associated with Bessel functions, Bound. Value Probl. 2013 (2013), 95, 9 pp.
  7. J. Choi, P. Agarwal, S. Mathur, and S. D. Purohit, Certain new integral formulas involving the generalized Bessel functions, Bull. Korean Math. Soc. 51 (2014), no. 4, 995-1003.
  8. J. Edward, A Treatise On The Integral Calculus. Vol. II, Chelsea Publishing Company, New York, 1922.
  9. S. Jain, J. Choi, P. Agarwal, and K. S. Nisar, Integrals involving Laguerre type polynomials and Bessel functions, Far East J. Math. Sci. 100 (2016), Issue-1, 965-976.
  10. N. U. Khan and T. Kashmin, On infinite series of three variables involving Whittaker and Bessel functions, Palest. J. Math. 5 (2015), no. 1, 185-190.
  11. N. U. Khan, S. W. Khan, and M. Ghayasuddin, Some new results associated with the Bessel-Struve kernel function, Acta Univ. Apulensis Math. Inform. No. 48 (2016), 89-101.
  12. N. U. Khan, M. Ghayasuddin, W. A. Khan, and S. Zia, Certain unified integral involving generalized Bessel-Maitland function, South East Asian J. Math. Math. Sci. 11 (2015), no. 2, 27-35.
  13. N. U. Khan, M. Ghayasuddin, and T. Usman, On certain integral formulas involving the product of Bessel function and Jacobi polynomial, Tamkang J. Math. 47 (2016), no. 3, 339-349.
  14. N. Menaria, K. S. Nisar, and S. D. Purohit, On a new class of integrals involving product of generalized Bessel function of the first kind and general class of polynomials, Acta Univ. Apulensis Math. Inform. No. 46 (2016), 97-105.
  15. S. R. Mondal and K. S. Nisar, Certain unified integral formulas involving the generalized modified k-Bessel function of first kind, Commun. Korean Math. Soc. 32 (2017), no. 1, 47-53.
  16. E. D. Rainville, Special Functions, The Macmillan Co., New York, 1960.
  17. H. M. Srivastava and M. C. Daoust, Certain generalized Neumann expansions associated with the Kampede Feriet function, Nederl. Akad. Wetensch. Proc. Ser. A 72=Indag. Math. 31 (1969), no. 31, 449-457.
  18. H. M. Srivastava and H. L. Manocha, A treatise on generating functions, Ellis Horwood Series: Mathematics and its Applications, Ellis Horwood Ltd., Chichester, 1984.
  19. E. T. Whittaker, An expression of certain known functions as generalized hypergeometric functions, Bull. Amer. Math. Soc. 10 (1903), no. 3, 125-134.
  20. E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, reprint of the fourth (1927) edition, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996.