DOI QR코드

DOI QR Code

Characteristics of Critical Pressure for a Beam Shape of the Anode Type ion Beam Source

  • Huh, Yunsung (R&D Center, Finesolution Co., Ltd.) ;
  • Hwang, Yunseok (R&D Center, Finesolution Co., Ltd.) ;
  • Kim, Jeha (Department of Energy Convergence Engineering, Cheongju University)
  • 투고 : 2018.06.08
  • 심사 : 2018.07.09
  • 발행 : 2018.07.31

초록

We studied the critical pressure characteristics of an anode type ion beam source driven by both charge repulsion and diffusion mechanism. The critical pressure $P_{crit}$ of the diffusion type ion beam source was linearly decreased from 2.5 mTorr to 0.5 mTorr when the gas injection was varied in 3~10 sccm, while the $P_{crit}$ of the charge repulsion ion beam source was remained at 3.5 mTorr. At the gas injection of 10 sccm, the range of having normal beam shape in the charge repulsion ion beam source was about 6.4 times wider than that in the diffusion type ion beam source. An impurity of Fe 2p (KE = 776.68 eV) of 12.88 at. % was observed from the glass surface treated with the abnormal beam of the charge repulsion type ion beam source. The body temperature of the diffusion type ion beam source was observed to increase rapidly at the rate of $1.9^{\circ}C/min$ for 30 minutes and to vary slowly at the rate of $0.1^{\circ}C/min$ for 200 minutes for an abnormal beam and normal beam, respectively.

과제정보

연구 과제번호 : Characteristics of critical pressure for a beam shape of the anode type ion beam source

연구 과제 주관 기관 : Ministry of Oceans and Fisheries

참고문헌

  1. J.A. Thornton, J. Vac. Sci. Technol., 11, 666 (1974). https://doi.org/10.1116/1.1312732
  2. K. Guenther, SPIE, 1324, 2 (1990).
  3. B. Movchan and A. Demchishin, Fiz. Met. Metalloved, 28, 653 (1969).
  4. Y.H. Ham, D.A. Shutov, K.H. Baek, L.M. Do, K.S. Kim, C.W. Lee, and K. H. Kwon, Thin Solid Films, 518, 6378 (2010). https://doi.org/10.1016/j.tsf.2010.03.138
  5. S.K. Koh, S.C. Choi, S.Han, J. Cho, W.K. Choi, H.-J. Jung, and H.H. Hur, Key Eng. Materials, 137, 107 (1998).
  6. D.R. Wheelers and S.V. Pepper, J. Vac. Sci. Technol., 20, 443 (1982).
  7. H. Schonhorn and R.H. Hansen, J. Appl. Polym. Sci., 11, 1461 (1967). https://doi.org/10.1002/app.1967.070110809
  8. S. Kim, J. Lee, and C.K. Hwangbo, J. Kor. Vac. Soc., 11, 141 (2002).
  9. S. Kim, J. Lee, and C.K. Hwangbo, Thin Solid Films, 475, 155 (2005). https://doi.org/10.1016/j.tsf.2004.08.035
  10. J. Park, B. Park, S. Kang, K.K. Lee, D. Lee, and K. Lee, J. Kor. Inst. Surf. Eng., 41, 88 (2008). https://doi.org/10.5695/JKISE.2008.41.3.088
  11. H.R. Kaufman and M.E. Harper, "2004 SPIE Proceeding", Vol. 5527, Aug. 4, (2004).
  12. M.L. Fulton, SPIE, 2253, 374 (2013).
  13. E.S. Cho and S.J. Kwon, J. Kor. Vac. Soc., 22, 26 (2013). https://doi.org/10.5757/JKVS.2013.22.1.26
  14. H.W. Choi, D.H. Park, J.H. Kim, W.K Choi, Y.J. Sohn, B.S. Song, J. Cho, and Y.S. Kim, J. Kor. Vac. Soc., 16, 79 (2007). https://doi.org/10.5757/JKVS.2007.16.2.079
  15. S. Lee and D.-G. Kim, Appl. Sci. Conv. Technol., 24, 162 (2015).
  16. E.S. Cho and S.J. Kwon, J. Kor. Vac. Soc., 22, 26 (2013). https://doi.org/10.5757/JKVS.2013.22.1.26
  17. Finesolution, Patent No. KR10-1478216, Dec. 24 (2014).
  18. Finesolution, Patent No. US9,269,535 B1, Feb. 23 (2016).
  19. D. Depla1, S. Mahieu1, and J. E. Greene, "Sputter Deposition Processes", pp. 261-265, William Andrew Publishing (2010).
  20. Y. Huh, Y. Hwang, and J. Kim, Appl. Sci. Conv. Technol., 27, 47 (2018).