DOI QR코드

DOI QR Code

Hydrogen Production by Photoelectrochemical Water Splitting

  • Seo, H.W. (Department of Physics, Jeju National University) ;
  • Kim, J. S. (Department of Physics, Jeju National University)
  • Published : 2018.07.31

Abstract

The basic principle and concept for hydrogen production via water-splitting process are introduced. In particular, recent research activities and their progress in the photoelectrochemical water-splitting process are investigated. The material perspectives of semiconducting photocatalysts are considered from metal oxides, including titanium oxides, to carbon compounds and perovskites. Various structural configurations, from conventional photoanodes with metal cathodes to tandem and nanostructures, are also studied. The pros and cons of each are described in terms of light absorption, charge separation/photoexcited electron-hole pair recombinations and further solar-to-hydrogen efficiency. In this research, we attempt to provide a broad view of up-to-date research and development as well as, possibly, future directions in the photoelectrochemical water-splitting field.

Acknowledgement

Supported by : Jeju National University

References

  1. Office of Energy Efficiency & Renewable Energy, https://www.energy.gov/eere/fuelcells/ (accessed 6. 5, 2018)
  2. DOE report: Progress in Hydrogen and Fuel Cells, DOE/EE-1647 (2017).
  3. H. Cavendish, Philosophical Trans. 56, 141 (1766). https://doi.org/10.1098/rstl.1766.0019
  4. J. Verne, L'Ile Mysterieuse (Pierre-Jules Hetzel, France, 1874)
  5. A. Kudo, Pure Appl. Chem. 79, 1917 (2007). https://doi.org/10.1351/pac200779111917
  6. N. S. Lewis, and D. G. Nocera, Proc. Natl. Acad. Sci. U.S.A. 103, 15729 (2006). https://doi.org/10.1073/pnas.0603395103
  7. M. Pagliaro, and A. G. Konstandopoulos, Solar Hydrogen: Fuel of the Future (Royal society of chemistry, Cambridge, 2012).
  8. J. Jia, L. C. Seitz, J. D. Benck, Y. Huo, Y. Chen, J. W. D. Ng, T. Bilir, J. S. Harris, and T. F. Jaramillo, Nature Com. 7,13237 (2016). https://doi.org/10.1038/ncomms13237
  9. J. F. Zhu and M. Zach, Curr Opin Colloid Interface Sci. 14, 260 (2009). https://doi.org/10.1016/j.cocis.2009.05.003
  10. B. D. Alexander, P.J. Kulesza, I. Rutkowska, R. Solarska, and J. Augustynski J. Mater. Chem, 18 2298 (2008). https://doi.org/10.1039/b718644d
  11. Z. Shi, X. Wen, Z. Guan, D. Gao, W. Luo, and Z. Zou, Ann. Phys. 358, 236 (2015). https://doi.org/10.1016/j.aop.2015.04.005
  12. M. Sarnowska, K. Bienkowski, P.J. Barczuk, R. Solarska, and J. Augustynski, Adv. Energy Mater. 6, 1600526 (2016). https://doi.org/10.1002/aenm.201600526
  13. J. Y. Zheng, S. I. Son, T. K. Van, and Y. S. Kang, RSC Adv. 5, 36307 (2015). https://doi.org/10.1039/C5RA03029C
  14. L. Wu, L. -K. Tsui, N. Swami, and G. Zangari, J. Phys. Chem. C. 114, 11551 (2010) https://doi.org/10.1021/jp103437y
  15. L. Yang, W. Wang, H. Zhang, S. Wang, M. Zhang, G. He, J. Lv, K. Zhu, and Z. Sun, Sol. Energy. Mater. Sol. Cells 165, 17 (2017) https://doi.org/10.1016/j.solmat.2016.12.012
  16. G. Li, N. M. Dimitrijevic, L. Chen, T. Rajh, and K. A. Gray, J. Phys. Chem. C 112, 19040 (2008). https://doi.org/10.1021/jp8068392
  17. A. Fujishima, and K. Honda, Nature 238, 37 (1972). https://doi.org/10.1038/238037a0
  18. E. P. Melian, O. G. Diaz, A. O. Mendez, C. R. Lopez, M. N. Suarez, J. M. D. Rodriguez, J. A. Navio, D. F. Hevia, and J. P. Pena, Int J. Hydrogen Energy 38, 2144 (2013). https://doi.org/10.1016/j.ijhydene.2012.12.005
  19. N. L. Wu, and M. S. Lee, Int J. Hydrogen Energy 29, 1601 (2004). https://doi.org/10.1016/j.ijhydene.2004.02.013
  20. H. W. Park, Y. S. Park, W. Y. Kim, and W. Y. Choi, J. Photochem. Photobiol. C 15, 1 (2013). https://doi.org/10.1016/j.jphotochemrev.2012.10.001
  21. N. R. Khalid, E. Ahmed, Z. Hong, Y. Zhang, M. Ullah, and M. Ahmed, Ceram. Int. 39 3569 (2013). https://doi.org/10.1016/j.ceramint.2012.10.183
  22. S. U. M. Khan, M. Al-Shahry, and W. B. Ingler Jr., Science 297, 2243 (2002). https://doi.org/10.1126/science.1075035
  23. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, Science 293, 269 (2001). https://doi.org/10.1126/science.1061051
  24. T. Umebayashi, T. Yamaki, H. Itoh, and K. Asai, Appl. Phys. Lett. 81, 454. (2002). https://doi.org/10.1063/1.1493647
  25. R. Asahi, T. Morikawa, H. Irie, and T. Ohwaki, Chem. Rev. 114, 9824 (2014) https://doi.org/10.1021/cr5000738
  26. X. Lv, L. Tao, M. Cao, X. Xiao, M. Wang, and Y. Shen, Nano Energy 44, 411 (2018). https://doi.org/10.1016/j.nanoen.2017.12.024
  27. K. Zhang, W. Zhou, L. Chi, X. Zhang, W. Hu, B. Jiang, K. Pan, G. Tian, and Z. Jiang, Chem. Sus. Chem. 9, 2841 (2016) https://doi.org/10.1002/cssc.201600854
  28. S. Patnaik, S. Martha, and K. M. Parida, RSC Adv. 6, 46929 (2016). https://doi.org/10.1039/C5RA26702A
  29. Y. Ito, W. Cong, T. Fujita, Z. Tang, and M. Chen, Angew. Chem. Int. Ed. Engl. 54, 2131 (2015). https://doi.org/10.1002/anie.201410050
  30. X. Gong, S. Liu, C. Ouyang, P. Strasser, and R. Yang, ACS Catal. 5, 920 (2015). https://doi.org/10.1021/cs501632y
  31. S. Pei, and H. M Cheng, Carbon 50, 3210 (2012). https://doi.org/10.1016/j.carbon.2011.11.010
  32. T. F. Yeh, J. M. Syu, C. Cheng, T. H. Chang, and H. S. Teng, Adv. Funct. Mater. 20, 2255 (2010). https://doi.org/10.1002/adfm.201000274
  33. J. Suntivich, K. J. May, H. A. Gasteiger, J. B. Goodenough, and Y. Shao-Horn, Science 334, 1383 (2011). https://doi.org/10.1126/science.1212858
  34. H. Fujito, H. Kunioku, D. Kato, H. Suzuki, M. Higashi, H. Kageyama, and R. Abe, J. Am. Chem. Soc. 138, 2082 (2016). https://doi.org/10.1021/jacs.5b11191
  35. J. G. Lee, J. M. Hwang, H. J. Hwang, O. S. Jeon, J. S. Jang, O. C. Kwon, Y. Y. Lee, B. C. Han, and Y. G. Shul, J. Am. Chem. Soc. 138, 3541 (2016). https://doi.org/10.1021/jacs.6b00036
  36. J. Luo, J. H. Im, M. T. Mayer, M. Schreier, M. K. Nazeeruddin, N. G. Park, S. D. Tilley, H. J. Fan, and M. Graetzel, Science 345,1593 (2014). https://doi.org/10.1126/science.1258307
  37. A. Vilanova, T. Lopes, C. Spenke, M. Wullenkord, and A. Mendes, Energy Storage Mater. 13, 175 (2018) https://doi.org/10.1016/j.ensm.2017.12.017
  38. J. Su, L. Guo, N. Bao, and C. A. Grimes, Nano Lett. 11, 1928 (2011). https://doi.org/10.1021/nl2000743
  39. Y. Li, T. Takata, D. K. Cha, K. Takanabe, T. Minegishi, J. Kubota, and K. Domen, Adv. Mater. 25, 125(2013). https://doi.org/10.1002/adma.201202582
  40. J. Luo, L. Steier, M.-K. Son, M. Schreier, M. T. Mayer, and M. Gratzel, Nano Lett. 16, 1848 (2016). https://doi.org/10.1021/acs.nanolett.5b04929
  41. J. Liu, M. Dai, J. Wu, Y. Hu, Q. Zhang, J. Cui, Y. Wang, H. H. Tan, and Y. Wu, Science Bulletin 63, 194 (2018). https://doi.org/10.1016/j.scib.2017.12.023
  42. C. Hao, W. Wang, R. Zhang, B, Zou, and H. Shi, Sol. Energy Mater. Sol. Cells 174, 132 (2018). https://doi.org/10.1016/j.solmat.2017.08.033
  43. F. Cao, W. Tian, and L. Li, J. Mater. Sci. Tech 34, 899 (2018). https://doi.org/10.1016/j.jmst.2017.11.054
  44. F. Xu, J. Mei, M. Zheng, D. Bai, D. Wu, Z. Cao, and K. Jiang, J. Alloy Comp 693, 1124 (2017). https://doi.org/10.1016/j.jallcom.2016.09.273