Hydrogen Production by Photoelectrochemical Water Splitting

  • Seo, H.W. (Department of Physics, Jeju National University) ;
  • Kim, J. S. (Department of Physics, Jeju National University)
  • Published : 2018.07.31


The basic principle and concept for hydrogen production via water-splitting process are introduced. In particular, recent research activities and their progress in the photoelectrochemical water-splitting process are investigated. The material perspectives of semiconducting photocatalysts are considered from metal oxides, including titanium oxides, to carbon compounds and perovskites. Various structural configurations, from conventional photoanodes with metal cathodes to tandem and nanostructures, are also studied. The pros and cons of each are described in terms of light absorption, charge separation/photoexcited electron-hole pair recombinations and further solar-to-hydrogen efficiency. In this research, we attempt to provide a broad view of up-to-date research and development as well as, possibly, future directions in the photoelectrochemical water-splitting field.


Supported by : Jeju National University


  1. Office of Energy Efficiency & Renewable Energy, (accessed 6. 5, 2018)
  2. DOE report: Progress in Hydrogen and Fuel Cells, DOE/EE-1647 (2017).
  3. H. Cavendish, Philosophical Trans. 56, 141 (1766).
  4. J. Verne, L'Ile Mysterieuse (Pierre-Jules Hetzel, France, 1874)
  5. A. Kudo, Pure Appl. Chem. 79, 1917 (2007).
  6. N. S. Lewis, and D. G. Nocera, Proc. Natl. Acad. Sci. U.S.A. 103, 15729 (2006).
  7. M. Pagliaro, and A. G. Konstandopoulos, Solar Hydrogen: Fuel of the Future (Royal society of chemistry, Cambridge, 2012).
  8. J. Jia, L. C. Seitz, J. D. Benck, Y. Huo, Y. Chen, J. W. D. Ng, T. Bilir, J. S. Harris, and T. F. Jaramillo, Nature Com. 7,13237 (2016).
  9. J. F. Zhu and M. Zach, Curr Opin Colloid Interface Sci. 14, 260 (2009).
  10. B. D. Alexander, P.J. Kulesza, I. Rutkowska, R. Solarska, and J. Augustynski J. Mater. Chem, 18 2298 (2008).
  11. Z. Shi, X. Wen, Z. Guan, D. Gao, W. Luo, and Z. Zou, Ann. Phys. 358, 236 (2015).
  12. M. Sarnowska, K. Bienkowski, P.J. Barczuk, R. Solarska, and J. Augustynski, Adv. Energy Mater. 6, 1600526 (2016).
  13. J. Y. Zheng, S. I. Son, T. K. Van, and Y. S. Kang, RSC Adv. 5, 36307 (2015).
  14. L. Wu, L. -K. Tsui, N. Swami, and G. Zangari, J. Phys. Chem. C. 114, 11551 (2010)
  15. L. Yang, W. Wang, H. Zhang, S. Wang, M. Zhang, G. He, J. Lv, K. Zhu, and Z. Sun, Sol. Energy. Mater. Sol. Cells 165, 17 (2017)
  16. G. Li, N. M. Dimitrijevic, L. Chen, T. Rajh, and K. A. Gray, J. Phys. Chem. C 112, 19040 (2008).
  17. A. Fujishima, and K. Honda, Nature 238, 37 (1972).
  18. E. P. Melian, O. G. Diaz, A. O. Mendez, C. R. Lopez, M. N. Suarez, J. M. D. Rodriguez, J. A. Navio, D. F. Hevia, and J. P. Pena, Int J. Hydrogen Energy 38, 2144 (2013).
  19. N. L. Wu, and M. S. Lee, Int J. Hydrogen Energy 29, 1601 (2004).
  20. H. W. Park, Y. S. Park, W. Y. Kim, and W. Y. Choi, J. Photochem. Photobiol. C 15, 1 (2013).
  21. N. R. Khalid, E. Ahmed, Z. Hong, Y. Zhang, M. Ullah, and M. Ahmed, Ceram. Int. 39 3569 (2013).
  22. S. U. M. Khan, M. Al-Shahry, and W. B. Ingler Jr., Science 297, 2243 (2002).
  23. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, Science 293, 269 (2001).
  24. T. Umebayashi, T. Yamaki, H. Itoh, and K. Asai, Appl. Phys. Lett. 81, 454. (2002).
  25. R. Asahi, T. Morikawa, H. Irie, and T. Ohwaki, Chem. Rev. 114, 9824 (2014)
  26. X. Lv, L. Tao, M. Cao, X. Xiao, M. Wang, and Y. Shen, Nano Energy 44, 411 (2018).
  27. K. Zhang, W. Zhou, L. Chi, X. Zhang, W. Hu, B. Jiang, K. Pan, G. Tian, and Z. Jiang, Chem. Sus. Chem. 9, 2841 (2016)
  28. S. Patnaik, S. Martha, and K. M. Parida, RSC Adv. 6, 46929 (2016).
  29. Y. Ito, W. Cong, T. Fujita, Z. Tang, and M. Chen, Angew. Chem. Int. Ed. Engl. 54, 2131 (2015).
  30. X. Gong, S. Liu, C. Ouyang, P. Strasser, and R. Yang, ACS Catal. 5, 920 (2015).
  31. S. Pei, and H. M Cheng, Carbon 50, 3210 (2012).
  32. T. F. Yeh, J. M. Syu, C. Cheng, T. H. Chang, and H. S. Teng, Adv. Funct. Mater. 20, 2255 (2010).
  33. J. Suntivich, K. J. May, H. A. Gasteiger, J. B. Goodenough, and Y. Shao-Horn, Science 334, 1383 (2011).
  34. H. Fujito, H. Kunioku, D. Kato, H. Suzuki, M. Higashi, H. Kageyama, and R. Abe, J. Am. Chem. Soc. 138, 2082 (2016).
  35. J. G. Lee, J. M. Hwang, H. J. Hwang, O. S. Jeon, J. S. Jang, O. C. Kwon, Y. Y. Lee, B. C. Han, and Y. G. Shul, J. Am. Chem. Soc. 138, 3541 (2016).
  36. J. Luo, J. H. Im, M. T. Mayer, M. Schreier, M. K. Nazeeruddin, N. G. Park, S. D. Tilley, H. J. Fan, and M. Graetzel, Science 345,1593 (2014).
  37. A. Vilanova, T. Lopes, C. Spenke, M. Wullenkord, and A. Mendes, Energy Storage Mater. 13, 175 (2018)
  38. J. Su, L. Guo, N. Bao, and C. A. Grimes, Nano Lett. 11, 1928 (2011).
  39. Y. Li, T. Takata, D. K. Cha, K. Takanabe, T. Minegishi, J. Kubota, and K. Domen, Adv. Mater. 25, 125(2013).
  40. J. Luo, L. Steier, M.-K. Son, M. Schreier, M. T. Mayer, and M. Gratzel, Nano Lett. 16, 1848 (2016).
  41. J. Liu, M. Dai, J. Wu, Y. Hu, Q. Zhang, J. Cui, Y. Wang, H. H. Tan, and Y. Wu, Science Bulletin 63, 194 (2018).
  42. C. Hao, W. Wang, R. Zhang, B, Zou, and H. Shi, Sol. Energy Mater. Sol. Cells 174, 132 (2018).
  43. F. Cao, W. Tian, and L. Li, J. Mater. Sci. Tech 34, 899 (2018).
  44. F. Xu, J. Mei, M. Zheng, D. Bai, D. Wu, Z. Cao, and K. Jiang, J. Alloy Comp 693, 1124 (2017).