Study of Retrieving the Aerosol Size Distribution from Aerosol Optical Depths

에어로졸 광학깊이를 이용한 에어로졸 크기분포 추출 연구

  • Kim, Dukhyeon (School of Basic Science, Hanbat National University)
  • 김덕현 (한밭대학교 기초과학부)
  • Received : 2018.06.05
  • Accepted : 2018.07.06
  • Published : 2018.08.25


In this study, aerosol size distributions were retrieved from aerosol optical depth measured over a range of 10 wavelengths from 250 to 1100 nm. The 10 wavelengths were selected where there is no absorption of atmospheric gases. To obtain the solar spectrum, a home-made solar tracking system was developed and calibrated. Using this solar tracking system, total optical depths (TODs) were extracted for the 10 wavelengths using the Langley plot method, and aerosol optical depths (AODs) were obtained after removing the effects of gas absorption and Rayleigh scattering from the TODs. The algorithm for retrieving aerosol size distributions was suggested by assuming a bimodal aerosol size distribution. Aerosol size distributions were retrieved and compared under various arbitrary atmospheric conditions. Finally, we found that our solar tracking spectrometer is useful for retrieving the aerosol size distribution, even though we have little information about the aerosol's refractive index.


Supported by : 기상청


  1. J. Haywood and O. Boucher, "Estimation of the direct and indirect Radiative forcing due to tropospheric aerosol: A review," Rev. Geophys. 38, 513-543 (2000).
  2. E. Jung, B. A. Albrecht, G. Feingold, H. H. Jonsson, P. Chuang, and S. L. Donaher, "Aerosols, clouds, and precipitation in the North Atlantic trades observed during the Barbados aerosol cloud experiment - Part 1: Distributions and variability," Atmos. Chem. Phys. 16, 8643-8666 (2016).
  3. Z. Ren-Jian, H. Kin-Fai, and S. Zhen-Xing, "The role of aerosol in climate change, the environment, and human health," Atmos. Oceanic Sci. Lett. 5, 156-161 (2012).
  4. G. Chen, S. Li, Y. Zhang, W. Zhang, D. Li, X. Wei, Y. He, M. L. Bell, G. Williams, G. B Marks, B. Jalaludin, M. Abramson, and Y. Guo, "Effects of ambient PM1 air pollution on daily emergency hospital visits in China: an epidemiological study," Planet. Health 1, 221-229 (2017).
  5. V. F. McNeill, "Atmospheric Aerosols: Clouds, Chemistry, and Climate," Annu. Rev. Chem. Biomol. Eng. 8, 427-444 (2017).
  9. O. V. Dubovik, T. V. Lapyonok, and S. L. Oshchepkov, "Improved technique for data inversion: optical sizing of multicomponent aerosols," Appl. Opt. 34, 8422-8436 (1995).
  10. M. Dubovik and M. King, "A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements," J. Geophys. Res. 105, 20673-20696 (2000).
  11. B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, K A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, "AERONET - A federated instrument network and data archive for aerosol characterization," Remote Sens. Environ. 66, 1-16 (1998).
  12. A. Herber, L. W. Thomason, H. Gernandt, U. Leiterer, D. Nagel, K. H. Schulz, J. Kaptur, T. Albrecht, and J. Notholt, "Continuous day and night aerosol optical depth observations in the Arctic between 1991 and 1999," J. Geophys. Res. Atmos. 107, 1984-2012 (2002).
  13. S. Volkov, I. Samokhvalov, H. Cheong, and D. Kim, "Optical model and calibration of a sun tracker," J. Quant. Spectrosc. Radiat. Transfer 180, 101-108 (2016).
  14. K. Chance and R. L. Kurucz, "An improved high-resolution solar reference spectrum for earth's atmosphere measurements in the ultraviolet, visible, and near infrared," J. Quant. Spectrosc. Radiat. Transfer 111, 1289-1295 (2010).
  15. K. V. Chance and R. J. D. Spurr, "Ring effect studies: Rayleigh scattering, including molecular parameters for rotational Raman scattering, and the Fraunhofer spectrum," Appl. Opt. 36, 5224-5230 (1997).
  16. C. E. Sioris, G. B. C. Lacoste, and M. P. Stoll, "Filling in of Fraunhofer lines by plant fluorescence: Simulations for a nadir-viewing satellite-borne instrument," J. Geophys. Res. 108, 4133-4138 (2003).
  19. H. C. van de Hulst, Light Scattering by Small Particle (John Wiley, New York, 1957), p. 370.
  20. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, New York, 1983), p. 550.
  21. S. Twomey, Introduction to the Mathematics of Inversion in Remote Sensing and Indirect Measurements (Elsevier, 1977) p. 243.
  22. C. D. Rodgers, Inverse Methods for Atmospheric sounding theory and practices (University of Oxford), Chapter 5.
  23. G. P. Gobbi, Y. J. Kaufman, I. Koren, and T. F. Eck, "Classification of aerosol properties derived from AERONET direct sun data," Atmos. Chem. Phys. 7, 453-458 (2007).
  24. G. L. Schuster, O. Dubovik, and A. Arola, "Remote sensing of soot carbon: Part 1: Distinguishing different absorbing aerosol species," Atmos. Chem. Phys. 16, 1565-1585 (2016).
  25. S. T. Massie and M. Hervig, "HITRAN 2012 refractive indices," J. Quant. Spectrosc. Radiat. Transfer 130, 373-380 (2013).
  26. M. I. Mishchenko, "Light scattering by size-shape distributions of randomly oriented axially symmetric particles of a size comparable to a wavelength," Appl. Opt. 32, 4652-4666 (1993).
  27. S. N. Volkov, I. V. Samokhvalov, and D. Kim, "Assessing and improving the accuracy of T-matrix calculation of homogeneous particles with point-group symmetries," J. Quant. Spectrosc. Radiat. Transfer 123, 169-175 (2013).
  28. F. Borghese, P. Denti, and R. Saija, Scattering from Model Nonspherical Particles (Springer-Verlag Berlin Heidelberg 2007).
  29. S. Shin, D. Shin, K. Lee, and Y. Noh, "Classification of dust/non-dust particle from the aisan dust plules and retrieval of microphysical properties using Raman lidar systems," J. Kor. Soc. Atmos. Environ. 28, 688-696 (2012).