DOI QR코드

DOI QR Code

Multiscale Virtual Testing Machines of Concrete and Other Composite Materials: A Review

콘크리트 및 복합재료용 멀티스케일 가상 시험기계에 관한 소고

  • Haile, Bezawit F. (Department of Civil and Environmental Engineering, Korea Institute of Science and Technology(KAIST)) ;
  • Park, S.M. (Department of Civil and Environmental Engineering, Korea Institute of Science and Technology(KAIST)) ;
  • Yang, B.J. (Institute of Advanced Composite Materials, Korea Institute of Science and Technology(KIST)) ;
  • Lee, H.K. (Department of Civil and Environmental Engineering, Korea Institute of Science and Technology(KAIST))
  • ;
  • 박솔뫼 (한국과학기술원 건설 및 환경공학과) ;
  • 양범주 (한국과학기술연구원 복합소재기술연구소) ;
  • 이행기 (한국과학기술원 건설 및 환경공학과)
  • Received : 2018.04.30
  • Accepted : 2018.07.09
  • Published : 2018.08.31

Abstract

Recently composite materials have dominated most engineering fields, owing to their better performance, increased durability and flexibility to be customized and designed for a specific required property. This has given them unprecedented superiority over conventional materials. With the help of the ever increasing computational capabilities of computers, researchers have been trying to develop accurate material models for the complex and integrated properties of these composites. This has led to advances in virtual testing of composite materials as a supplement or a possible replacement of laboratory experiments to predict the properties and responses of composite materials and structures. This paper presents a review on the complex multi-scale modelling framework of the virtual testing machines, which involve computational mechanics at various length-scales starting with nano-mechanics and ending in structure level computational mechanics, with a homogenization technique used to link the different length scales. In addition, the paper presents the features of some of the biggest integrated virtual testing machines developed for study of concrete, including a multiscale modeling scheme for the simulation of the constitutive properties of nanocomposites. Finally, the current challenges and future development potentials for virtual test machines are discussed.

Acknowledgement

Supported by : National Research Foundation of Korea(NRF)

References

  1. Ahn, T.S., Ha, Y.D. (2017) Study on Peridynamic Interlayer Modeling for Multilayered Structures, J. Comput. Struct. Eng. Inst. Korea, 30(5), pp.389-396. https://doi.org/10.7734/COSEIK.2017.30.5.389
  2. Aivazis, M., Goddard, W.A., Meiron, D., Ortiz, M., Pool, J., Shepherd, J. (2000) A Virtual Test Facility for Simulating Thermodynamic response of Materials, Comput. Sci. & Eng., 2(2), pp.42-53.
  3. Akpoyomare, A.I., Okereke, M.I., Bingley, M.S. (2017) Virtual Testing of Composites: Imposing Periodic Boundary Conditions on General Finite Element Meshes, Compos. Struct., 160(15), pp.983-994. https://doi.org/10.1016/j.compstruct.2016.10.114
  4. Bentz, D.P. (1997) Three-Dimensional Computer Simulation of Portland Cement Hydration and Microstructure Development, J. Am. Ceram. Soc., 80(1) pp.3-21. https://doi.org/10.1111/j.1151-2916.1997.tb02785.x
  5. Bernard, O., Ulm, F., Lemarchand, E. (2003) A Multiscale Micromechanics-Hydration Model for the Early-age Elastic Properties of Cement-Based Materials, Cement & Concr. Res., 33(9), pp.1293-1309. https://doi.org/10.1016/S0008-8846(03)00039-5
  6. Bullard, J.W. (2016) Virtual Cement and Concrete Testing Laboratory: Version 9.5 User Guide, National Institute of Standards and Technology, Special Publication SP 1173, p.60.
  7. Bullard, J.W., Stutzman, P.E., Belloc, L.M.O., Garboczi, E.J., Bentz, D.P. (2009) Virtual Cement and Concrete Testing Laboratory for Quality Testing and Sustainability of Concrete, National Institute of Standards and Technology, Special Publication SP 266. pp.27-36.
  8. California Institute of Technology (2017) The Virtual Test Facility, VTF. Retrieved from http://www.vtf.website/asc/wiki/bin/view/
  9. Charalambakis, N. (2010) Homogenization Techniques and Micromechanics, A Survey and Perspectives, Applied Mechanics Reviews, 63, pp.1-10.
  10. Chong, K.P., Garboczi, E. (2002) Smart and Designer Structural Material System, Prog. Struct. Eng. Mater., 4(4), pp.417-430. https://doi.org/10.1002/pse.134
  11. Cox, B., Yang, Q. (2006) In Quest of Virtual Tests for Structural Composites, Sci., 314(5802), pp.1102-1107. https://doi.org/10.1126/science.1131624
  12. Deiterding, R. Radovitzky, R. Mauch, S.P., Noels, L, Cummings, J.C., Meiron, D.I (2006) A Virtual Test Facility for the Efficient Simulation of Solid Material Response under Strong Shock and Detonation Wave Loading, Eng. Comput., 22(3-4) pp.325-347. https://doi.org/10.1007/s00366-006-0043-9
  13. Gonzalez, C., LLorca, J. (2007) Virtual Fracture Testing of Composites: A Computational Micromechanics Approach, Eng. Fract. Mech., 74(7), pp.1126-1138. https://doi.org/10.1016/j.engfracmech.2006.12.013
  14. Ha, S.K., Yang, B.J., Lee, H.K., (2009) Finite Element Analysis for Evaluating the Performance of RC Beams Strengthened with SFRP Coating, J. Comput. Struct. Eng. Inst. Korea, 22(6), pp.579-585.
  15. Hoekstar A., Chopard B., Coveney, P. (2014) Multiscale Modeling and Simulation: A Position Paper, Phil. Trans. R. Soc., A372, 20130377.
  16. Ishida, T., Tsuchiya, S., Chaube, R.P. (2005) "DUCOM DEMO" (August 2, 2017) Retrieved from http://concrete.t.u-tokyo.ac.jp/en/demos/ducom/.
  17. Jennings, H.M., Johnson, S.K. (1986) Simulation of Microstructure Development during the Hydration of a Cement Compound, J. Am. Ceram. Soc., 69(11), pp.790-795. https://doi.org/10.1111/j.1151-2916.1986.tb07361.x
  18. Jordan, J., Jacob, K.I., Tannenbaum, R., Sharaf, M.A., Jasiuk, I. (2005) Experimental trends in polymer nanocomposites-a review, Materials Science and Engineering. A 393, 1. https://doi.org/10.1016/j.msea.2004.09.044
  19. Lee, H.K., Pyo, S.H. (2008) Multi-Level Modeling of Effective Elastic Behavior and Progressive Weakened Interface in Particulate Composites, Compos. Sci. & Tech., 68(2), pp.387-397. https://doi.org/10.1016/j.compscitech.2007.06.026
  20. Lee, H.K. (2001) A Computational Approach to the Investigation of Impact Damage Evolution in Discontinuously Reinforced Fiber Composites, Comput. Mech., 27(6), pp.504-512. https://doi.org/10.1007/s004660100262
  21. Liang, Z., Lee, H.K, Suaris, W. (2006) Micromechanics based Constitutive Modeling for Unidirectional Laminated Composites, Int. J. Solids & Struct., 43(18-19), pp.5674-5689. https://doi.org/10.1016/j.ijsolstr.2005.08.020
  22. Llorca, J., Gonzalez, C., Molina-Aldareguia, J. M., Segurado, J., Seltzer, R., Sket, F., Canal, L.P. (2011) Multiscale Modeling of Composite Materials: A Roadmap Towards Virtual Testing, Adv. Mater., 23(44), pp.5130-5147. https://doi.org/10.1002/adma.201101683
  23. Maekawa, K., Ishida, T., Kishi, T. (2003) Multi-scale Modeling of Concrete Performance Integrated Material and Structural Mechanics, J. Adv. Concr. Technol., 1(2), pp.91-126. https://doi.org/10.3151/jact.1.91
  24. Nilsen, A.U., Monteiro, P.J.M. (1993) Concrete: A Three Phase Material. Cement and Concrete Research, 23, pp.147-151. https://doi.org/10.1016/0008-8846(93)90145-Y
  25. Oden, J.T., Belytschko,T., Babuska, I., Hughes, T.J.R. (2003) Research Directions in Computational Mechanics, Comput. Methods Appl. Mech. & Eng., 192(7-8), pp.913-922. https://doi.org/10.1016/S0045-7825(02)00616-3
  26. Oden, J.T., Prudhomme, S., Romkes, A., Bauman, P.T. (2006) Multiscale Modeling of Physical Phenomena: Adaptive Control of Models, SIAM J. Scien. Comput., 28(6), pp.2359-2389. https://doi.org/10.1137/050632488
  27. Okereke, M., Petrinic, N., Wiegand, N., R. Gerlach., S.iviour, C. (2008) Virtual Testbed for Numerical Homogenization of Elastic Behavior and Damage Initiation in Bidirectional Composites, Proceedings of Research: 8th World Congress on Computational Mechanics (June30-July5, 2008) Italy, pp.1-3
  28. Okereke, M.I., Akpoyomare, A.I. (2013) A virtual Framework for Prediction of Full-Field Elastic Response of Unidirectional Composites, Comput. Mater. Sci., 70, pp.82-99. https://doi.org/10.1016/j.commatsci.2012.12.036
  29. Okereke, M. I., Akpoyomare, A. I., Bingley, M. S. (2014) Virtual Testing of Advanced Composites, Cellular Materials and Biomaterials: A Review, Compos. Part B: Eng., 60, pp.637-662. https://doi.org/10.1016/j.compositesb.2014.01.007
  30. Qu, J., Cherkaoui, M. (2006) Fundamentals of Micromechanics of Solids, New Jersey: John Wiley & Sons, Inc., Hoboken.
  31. Wittmann, F.H., Roelfstra, P.E., Sadouki. H. (1985) Simulation and Analysis of Composite Structures, Mater. Sci. & Eng., 68(2), pp.239-248. https://doi.org/10.1016/0025-5416(85)90413-6
  32. Yang, B.J., Ha, S.K., Lee, H.K. (2012) Micromechanics-based Analysis on Tensile behavior of the Sprayed FRP Composites with Chopped Glass Fibers, J. Comput. Struct. Eng. Inst. Korea, 25(3), pp.211-217. https://doi.org/10.7734/COSEIK.2012.25.3.211
  33. Yang, B.J., Hwang, Y.Y., Lee, H.K. (2013) Elastoplastic Modeling of Polymeric Composites Containing Randomly Located Nanoparticles with an Interface Effect, Compos. Struct., 99, pp.123-130. https://doi.org/10.1016/j.compstruct.2012.11.043
  34. Yang, B.J., Shin, H., Lee, H.K., Kim, H. (2013) A Combined Molecular Dynamics / Micromechanics / Finite Element Approach for Multiscale Constitutive Modeling of Nanocomposites with Interface Effects, App. Phys. Lett., 103(24), 241903. https://doi.org/10.1063/1.4819383
  35. Zhu, L., Narh, K.A. (2004) Numerical Simulation of the Tensile Modulus of Nanoclay-Filled Polymer Composites, J. Polym. Sci. Part B: Polym. Phys. 42(12), pp.2391-2406. https://doi.org/10.1002/polb.20112