Electrospray technique for preparation of core-shell materials : A mini-review

  • Received : 2018.06.26
  • Accepted : 2018.07.12
  • Published : 2018.09.30


During the last decade, electrospray (ES) techniques have been used as potential methods for preparing of core-shell materials. Depending on the architecture of nozzle and design of devices, the ES techniques includes monoaxial, coaxial, multiple coaxial nozzle ES and microfluidic ES devices. ES operates based on a basic principle, in which a spray of monodisperse droplets is formed by dispensing an electrically conductive liquid through a capillary charged to a sufficiently high potential. In review of many recent research papers, we take a closer look at ES techniques and their applications for fabrication of core-shell materials. Several advantages of ES technique compared with other methods were emphasized and it may be regarded as a potential tool for fabrication of core-shell materials current and near future.


Supported by : National Research Foundation of Korea


  1. Almeria, B., Fahmy, T.M., and Gomez, A. (2011). A multiplexed electrospray process for single-step synthesis of stabilized polymer particles for drug delivery, Journal of Controlled Release, 154, 203-210.
  2. Bock, N., Dargaville, T.R., and Woodruff, M.A. (2012). Electrospraying of polymers with therapeutic molecules: State of the art, Progress in Polymer Science, 37, 1510-1551.
  3. Chakraborty, S., Liao, I.-C., Adler, A., and Leong, K.W. (2009). Electrohydrodynamics: A facile technique to fabricate drug delivery systems, Advanced Drug Delivery Reviews, 61, 1043-1054.
  4. Chaudhuri, R.G., and Paria, S. (2012). Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications, Chemical Reviews, 112, 2373-2433.
  5. Chen, G.-C., Kuo, C.-Y., and Lu, S.-Y. (2005). A general process for preparation of core-shell particles of complete and smooth shells, Journal of the American Ceramic Society, 88, 277-283.
  6. Chen, J., Cui, Y., Xu, X., and Wang, L.-Q. (2018). Direct and effective preparation of core-shell PCL/PEG nanoparticles based on shell insertion strategy by using coaxial electrospray, Colloids and Surfaces A, 547, 1-7.
  7. Chronakis, I. (2005). Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process-A review, Journal of Materials Processing Technology, 167, 283-293.
  8. Cloupeau, M., and Prunet-Foch, B. (1994). Electrohydrodynamic spraying functioning modes: A critical review, Journal of Aerosol Science, 25, 1021-1036.
  9. Davoodi, P., Feng, F., Xu, Q., Yan, W.-C., Tong, Y.W., Srinivasan, M.P., Sharma, V.K., and Wang, C.-H. (2015). Coaxial electrohydrodynamic atomization: Microparticles for drug delivery applications, Journal of Controlled Release, 205, 70-82.
  10. Davoodi, P., Ng, W.C., Yan, W.C., Srinivasan, M.P., and Wang, C.-H. (2016). Double-walled microparticles-embedded self-cross-linked, injectable, and antibacterial hydrogel for controlled and sustained release of chemotherapeutic agents, ACS Applied Materials & Interfaces, 8, 22785-22800.
  11. Deng, W., Waits, C.M., Morgan, B., and Gomez, A. (2009). Compact multiplexing of monodisperse electrosprays, Journal of Aerosol Science, 40, 907-918.
  12. Denga, W., Klemic, J.F., Li, X., Reed, M.A., and Gomez, A. (2006). Increase of electrospray throughput using multiplexed microfabricated sources for the scalable generation of monodisperse droplets, Journal of Aerosol Science, 37, 696-714.
  13. Enlow, E.M., Luft, J.C., Napier, M.E., and Desimone, J.M. (2011). Potent engineered PLGA nanoparticles by virtue of exceptionally high chemotherapeutic loadings, Nano Letters, 11, 808-813.
  14. Ganan-Calvo, A.M. (1999). The surface charge in electrospraying: Its nature and its universal scaling laws, Journal of Aerosol Science, 30, 863-872.
  15. Ganan-Calvo, A.M., Lasheras, J.C., Davila, J., and Barrero, A. (1994). The electrostatic spray emitted from an electrified conical meniscus, Journal of Aerosol Science, 25, 1121-1142.
  16. Gawande, M.B., Goswami, A., Asefa, T., Guo, H., Biradar, A.V., Peng, D.-L., Zboril, R., and Varma, R.S. (2015). Core-shell nanoparticles: synthesis and applications in catalysis and electrocatalysis, Chemical Society Reviews, 44, 7540-7590.
  17. Hans, M.L., and Lowman, A.M. (2002). Biodegradable nanoparticles for drug delivery and targeting, Current Opinion in Solid State & Materials Science, 6, 319-327.
  18. Hao, S., Wang, Y., and Wang, B. (2014). Sinking-magnetic microparticles prepared by the electrospray method for enhanced gastric antimicrobial delivery, Molecular Pharmaceutics, 11, 1640-1650.
  19. Hartman, R.P.A., Brunner, D.J., Camelot, D.M.A., Marijnissen, J.C.M., and Scarlett, B. (1999). Electrohydrodynamic atomization in the cone-jet mode physical modeling of the liquid cone and jet, Journal of Aerosol Science, 30, 823-849.
  20. Jaworek, A., (2007). Micro- and nanoparticle production by electrospraying, Powder Technology, 176, 18-35.
  21. Jaworek, A., Krupa, A., Lackowski, M., Sobczyk, A.T., Czech, T., Ramakrishna, S., Sundarrajan, S., and Pliszka, D. (2009). Nanocomposite fabric formation by electrospinning and electrospraying technologies, Journal of Electrostatics, 67, 435-438.
  22. Kim, J., Sachdev, P., and Sidhu, K. (2013). Alginate microcapsule as a 3D platform for theefficient differentiation of human embryonicstem cells to dopamine neurons, Stem Cell Research, 11, 978-989.
  23. Lee, Y.-H., Mei, F., Bai, M.-Y., Zhao, S., and Chen, D.-R. (2010). Release profile characteristics of biodegradable-polymer-coated drug particles fabricated by dual-capillary electrospray, Journal of Controlled Release, 145, 58-65.
  24. Lhernould, M.S., and Lambert, P. (2011). Compact polymer multi-nozzles electrospray device with integrated microfluidic feeding system, Journal of Electrostatics, 69, 313-319.
  25. Loscertales, I.G., A. Barrero, Guerrero, I., Cortijo, R., Marquez, M., and Ganan-Calvo, A.M. (2002). Micro/nano encapsulation via electrified coaxial liquid jets, Science, 295, 1695-1698.
  26. Luo, C.J., and Edirisinghe, M. (2014). Core-liquid-induced transition from coaxial electrospray to electrospinning of low-viscosity poly(lactide-co- glycolide) sheath solution, Macromolecules, 47, 7930-7938.
  27. Malik, S.A., Ng, W.H., Bowen, J., Tang, J., Gomez, A., Kenyon, A.J., and Day, R.M. (2016). Electrospray synthesis and properties of hierarchically structured PLGA TIPS microspheres for use as controlled release technologies, Journal of Colloid and Interface Science, 467, 220-229.
  28. Mei, F., and Chen, D.-R. (2007). Investigation of compound jet electrospray: Particle encapsulation, Physics of Fluids, 19, 103303.
  29. Mei, F., and Chen, D.-R. (2008). Operational modes of dual-capillary electrospraying and the formation of the stable compound cone-jet mode, Aerosol and Air Quality Research, 8, 218-232.
  30. Nie, H., Dong, Z., Arifin, D.Y., Hu, Y., and Wang, C.-H. (2010). Core/shell microspheres via coaxial electrohydrodynamic atomization for sequential and parallel release of drugs, Journal of Biomedical Materials Research A, 95A, 709-716.
  31. Nii, T., and Ishii, F. (2005). Encapsulation efficiency of water-soluble and insoluble drugs in liposomes prepared by the microencapsulation vesicle method, International Journal of Pharmaceutics, 298, 198-205.
  32. Nikolaou, M., and Krasia-Christoforou, T. (2018). Electrohydrodynamic methods for the development of pulmonary drug delivery systems, European Journal of Pharmaceutical Sciences, 113, 29-40.
  33. Oh, H., Kim, K., and Kim, S. (2008). Characterization of deposition patterns produced by twin-nozzle electrospray, Journal of Aerosol Science, 39, 801-813.
  34. Olvera-Trejoab, D., and Velasquez-Garcia, L.F. (2016). Additively manufactured MEMS multiplexed coaxial electrospray sources for high-throughput, uniform generation of core-shell microparticles, Lab Chip, 16, 4121-4132.
  35. Parhi, P., Mohanty, C., and Sahoo, S.K. (2012). Nanotechnology-based combinational drug delivery: an emerging approach for cancer therapy, Drug Discovery Today, 17, 1044-1052.
  36. Paz-Samaniego, R., Rascon-Chu, A., Brown-Bojorquez, F., Carvajal-Millan, E., Pedroza-Montero, M., Silva-Campa, E., Sotelo-Cruz, N., Lopez-Franco, Y.L., and Lizardi-Mendoza, J. (2018). Electrospray-assisted fabrication of core-shell arabinoxylan gel particles for insulin and probiotics entrapment, Journal of Applied Polymer Science, 135, 46411.
  37. Ramasundarama, S., Son, A., Seid, M.G., Shim, S., Lee, S.H., Chung, Y.C., Lee, C., Lee, J., and Hong, S.W. (2015). Photocatalytic applications of paper-like poly(vinylidene fluoride)-titanium dioxide hybrids fabricated using a combination of electrospinning and electrospraying, Journal of Hazardous Materials, 285, 267-276.
  38. Regele, J.D., Papac, M.J., Rickard, M.J.A., and Dunn-Rankin, D. (2002). Effects of capillary spacing on EHD spraying from an array of cone jets, Journal of Aerosol Science, 33, 1471-1479.
  39. Salata, O.V. (2005). Tools of nanotechnology: Electrospray, Current Nanoscience, 1, 25-33.
  40. Smeets, A., Clasen, C., and Mooter, G.V.d. (2017). Electrospraying of polymer solutions: Study of formulation and process parameters, European Journal of Pharmaceutics and Biopharmaceutics, 119, 114-124.
  41. Sridharab, R., and Ramakrishna, S. (2013). Electrosprayed nanoparticles for drug delivery and pharmaceutical applications, Biomatter, 3, e24281.
  42. Taylor, G. (1964). Disintegration of water drops in an electric field, Proceedings of the Royal Society of London A, 280, 383-397.
  43. Taylor, G. (1969). Electrically driven jets, Proceedings of the Royal Society of London A, 313, 453-475.
  44. Velasquez-Garcia, L.F., Akinwande, A.I., and Martinez-Sanchez, M. (2006). A planar array of micro-fabricated electrospray emitters for thruster applications, Journal of Microelectromechanical Systems, 15, 1272-1280.
  45. Wang, H., Zhao, Z., Liu, Y., Shao, C., Bian, F., and Zhao, Y. (2018). Biomimetic enzyme cascade reaction system in microfluidic electrospray microcapsules, Science Advances, 4, 2816.
  46. Wang, Y.-X., Cooper, J.W., Leec, C.S., and DeVoe, D.L. (2004). Efficient electrospray ionization from polymer microchannels using integrated hydrophobic membranes, Lab Chip, 4, 363-367.
  47. Wu, Y., Duong, A., Lee, L.J., and Wyslouzi, B.E. (2012a). Electrospray production of nanoparticles for drug/nucleic acid delivery, The Delivery of Nanoparticles, InTech.
  48. Wu, Y., Li, L., Mao, Y., and Lee, L.J. (2012b). Static micromixercoaxial electrospray synthesis of theranostic lipoplexes, ACS Nano, 6, 2245-2252.
  49. Xie, J., Jiang, J., Davoodi, P., Srinivasan, M.P., and Wang, C.-H. (2015). Electrohydrodynamic atomization: A two-decade effort to produce and process micro-/ nanoparticulate materials, Chemical Engineering Science, 125, 32-57.
  50. Xie, J., Marijnissen, J.C.M., and Wang, C.-H. (2006). Microparticles developed by electrohydrodynamic atomization for the local delivery of anticancer drug to treat C6 glioma in vitro, Biomaterials, 27, 3321-3332.
  51. Xu, Q., Qin, H., Yin, Z., Hua, J., Pack, D.W., and Wang, C.-H. (2013). Coaxial electrohydrodynamic atomization process for production of polymeric composite microspheres, Chemical Engineering Science, 104, 330-346.
  52. Yan, W.-C., Davoodi, P., Tong, Y.W., and Wang, C.-H. (2016). Computational study of core-shell droplet formation in coaxial electrohydrodynamic atomization process, AIChE Journal, 62, 4259-4276.
  53. Yan, W.-C., Tong, Y.W., and Wang, C.-H. (2017). Coaxial electrohydrodynamic atomization toward large scale production of core-shell structured microparticles, AIChE Journal, 63, 5303-5319.
  54. Yao, S., Liu, H., Yu, S., Li, Y., Wang, X., and Wang, L. (2016). Drug-nanoencapsulated PLGA microspheres prepared by emulsion electrospray with controlled release behavior, Regenerative Biomaterials, 309-317.
  55. Yeo, L.Y., Gagnon, Z., and Chang, H.-C. (2005). AC electrospray biomaterials synthesis, Biomaterials, 26, 6122-6128.
  56. Yu, W., Ma, Q., Wang, C., Dong, X., Wang, J., and Liu, G. (2014). Electrospray ionization preparation and photodegradation properties of CeO2 microspheres with tunable morphologies, Materials Express, 4, 435-440.
  57. Yurteri, C.U., Hartman, R.P.A., and Marijnissen, J.C.M. (2010). Producing pharmaceutical particles via electrospraying with an emphasis on nano and nano structured particles - a review, Kona Powder and Particle Journal, 28, 91-115.
  58. Zarrabi, A., and Vossoughi, M. (2009). Electrospray: Novel fabrication method for biodegradable polymeric nanoparticles for further applications in drug delivery systems, Nanocon 2009, Conference Proceedings, 2009, 324-331.
  59. Zhang, C., Yao, Z.-C., Ding, Q., Choi, J.J., Ahmad, Z., Chang, M.-W., and Li, J.-S. (2017). Tri-needle coaxial electrospray engineering of magnetic polymer yolk-shell particles possessing dual-imaging modality, multiagent compartments, and trigger release potential, ACS Applied Materials & Interfaces, 9, 21485-21495.
  60. Zhang, W., and He, X. (2009). Encapsulation of living cells in small (approximately 100 microm) alginate microcapsules by electrostatic spraying: a parametric study, Journal of Biomechanical Engineering, 131, 074515.
  61. Zhao, S., Agarwal, P., Rao, W., Huang, H., Zhang, R., Liu, Z., Yu, J., Weisleder, N., Zhangi, W., and He, X. (2014). Coaxial electrospray of liquid core-hydrogel shell microcapsules for encapsulation and miniaturized 3D culture of pluripotent stem cells, Integrative Biology, 6, 874-884.
  62. Zou, Q., Zhao, J., Liu, X., Tian, F., Zhang, H.p., Zhang, H., and Chen, W. (2011). Microencapsulation of Bifidobacterium bifidum F-35 in reinforced alginate microspheres prepared by emulsification/ internal gelation, International Journal of Food Science & Technology, 46, 1672-1678.