DOI QR코드

DOI QR Code

Effects of HLB value on oil-in-water emulsions: Droplet size, rheological behavior, zeta-potential, and creaming index

  • Hong, In Kwon (Department of Chemical Engineering, Dankook University) ;
  • Kim, Su In (Department of Chemical Engineering, Dankook University) ;
  • Lee, Seung Bum (Department of Chemical Engineering, Dankook University)
  • Received : 2018.03.14
  • Accepted : 2018.06.24
  • Published : 2018.11.25

Abstract

Using mixed nonionic surfactants Span/Tween, we investigated the effects of HLB value on the O/W emulsion stability and rheological behaviors. In this study, MS-01 (Span 60 & Tween 60) and MS-02 (Span 80 & Tween 80) was used as mixed nonionic surfactants. We considered required HLB value 10.85 and selected corresponding HLB value range 8-13. The droplet size distributions, droplet morphology, rheological properties, zeta-potential and creaming index of the emulsion samples were obtained to understand the mechanism and interaction of droplets in O/W emulsion. The results indicated that optimal HLB number for O/W emulsions was 10.8 and 10.7, while using MS-01 surfactant and MS-02 surfactant respectively. MS-01 (HLB = 10.8) sample and MS-02 (HLB = 10.7) sample showed smallest droplet size and highest zeta-potential value. Rheological properties are measured to understand rheological behaviors of emulsion samples. All emulsion samples showed no phase separation until 30 days storage time at $25^{\circ}C$.

Acknowledgement

Supported by : Dankook University

References

  1. Z. Zhang, X. Wang, J. Yu, S. Chen, H. Ge, L. Jiang, LWT Food Sci. Technol. 78 (2017) 241. https://doi.org/10.1016/j.lwt.2016.12.051
  2. A. Teo, S.J. Lee, K.K.T. Goh, F.M. Wolber, Food Chem. 221 (2017) 1269. https://doi.org/10.1016/j.foodchem.2016.11.030
  3. E. Hebishy, M. Buffa, B. Juan, A. Blasco-Moreno, A.-J. Trujillo, LWT Food Sci. Technol. 76 (2017) 57. https://doi.org/10.1016/j.lwt.2016.10.045
  4. K.C. Powell, A. Chauhan, Colloids Surf. A 504 (2016) 458. https://doi.org/10.1016/j.colsurfa.2016.06.002
  5. R. Pal, J. Colloid Interface Sci. 356 (2011) 118. https://doi.org/10.1016/j.jcis.2010.12.068
  6. C.D. Ampatzidis, E.-M.A. Varka, T.D. Karapantsios, Colloids Surf. A 460 (2014) 176. https://doi.org/10.1016/j.colsurfa.2014.02.033
  7. I.K. Hong, S.I. Kim, B.R. Park, J. Choi, S.B. Lee, Appl. Chem. Eng. 27 (2016) 527. https://doi.org/10.14478/ace.2016.1078
  8. A. Baruah, D.S. Shekhawat, A.K. Pathak, K. Ojha, J. Pet. Sci. Eng. 146 (2016) 340. https://doi.org/10.1016/j.petrol.2016.05.001
  9. A.S. Koneva, E.A. Safonova, P.S. Kondrakhina, M.A. Vovk, A.A. Lezov, Colloids Surf. A 518 (2017) 273. https://doi.org/10.1016/j.colsurfa.2017.01.020
  10. W.C. Griffin, J. Soc. Cosmet. Chem. 5 (1954) 249.
  11. J.Y. Yeon, B.R. Shin, T.G. Kim, J.M. Seo, C.H. Lee, S.G. Lee, H.B. Pyo, J. Soc. Cosmet. Sci. Korea 40 (3) (2014) 227. https://doi.org/10.15230/SCSK.2014.40.3.227
  12. M.R. Housaindokht, A.N. Pour, Solid State Sci. 14 (2012) 622. https://doi.org/10.1016/j.solidstatesciences.2012.01.016
  13. X. Jin, D.A. Streett, C.A. Dunlap, M.E. Lyn, Biol. Control 46 (2008) 226. https://doi.org/10.1016/j.biocontrol.2008.03.008
  14. L.O. Orafidiya, F.A. Oladimeji, Int. J. Pharm. 237 (2002) 241. https://doi.org/10.1016/S0378-5173(02)00051-0
  15. T. Schmidts, D. Dobler, A.C. Guldan, N. Paulus, F. Runkel, Colloids Surf. A 372 (2010) 48. https://doi.org/10.1016/j.colsurfa.2010.09.025
  16. M. Mukherjee, A. Mahapatra, J. Photochem. Photobiol. A 294 (2014) 1. https://doi.org/10.1016/j.jphotochem.2014.07.020
  17. V.B. Junyaprasert, P. Singhsa, J. Suksiriworapong, D. Chantasart, Int. J. Pharm. 423 (2012) 303. https://doi.org/10.1016/j.ijpharm.2011.11.032
  18. S. Ariyaprakai, T. Limpachoti, P. Pradipasena, Food Hydrocoll. 30 (2013) 358. https://doi.org/10.1016/j.foodhyd.2012.06.003
  19. A. Nesterenko, A. Drelich, H. Lu, D. Clausse, I. Pezron, Colloids Surf. A 457 (2014) 49. https://doi.org/10.1016/j.colsurfa.2014.05.044
  20. M. Royer, M. Nollet, M. Catte, M. Collinet, C. Pierlot, Colloids Surf. A 536 (2018) 165. https://doi.org/10.1016/j.colsurfa.2017.07.024
  21. N.M. Zadymova, Z.N. Skvortsova, V.Y. Traskine, F.A. Kulikov-Kostyushko, V.G. Kulichikhin, A.Y. Malkin, J. Pet. Sci. Eng. 149 (2017) 522. https://doi.org/10.1016/j.petrol.2016.10.063
  22. V. Castel, A.C. Rubiolo, C.R. Carrara, Food Hydrocoll. 63 (2017) 170. https://doi.org/10.1016/j.foodhyd.2016.08.039
  23. J. Plasencia, B. pettersen, O.J. Nydal, J. Pet. Sci. Eng. 101 (2013) 35. https://doi.org/10.1016/j.petrol.2012.11.009
  24. A. Pajouhandeh, A. Kavousi, M. Schaffie, M. Ranjbar, Colloids Surf. A 520 (2017) 597. https://doi.org/10.1016/j.colsurfa.2017.02.002
  25. H.S. Kim, T.G. Mason, Adv. Colloid Interface Sci. 247 (2017) 397. https://doi.org/10.1016/j.cis.2017.07.002
  26. S. Tripathi, A. Bhattacharya, R. Singh, R.F. Tabor, Chem. Eng. Sci. 174 (2017) 290. https://doi.org/10.1016/j.ces.2017.09.016
  27. C. Roldan-Cruz, E.J. Vernon-Carter, J. Alvarez-Ramirez, Colloids Surf. A 511 (2016) 145. https://doi.org/10.1016/j.colsurfa.2016.09.074
  28. Z. Wu, J. Wu, R. Zhang, S. Yuan, Q. Lu, Y. Yu, Carbohydr. Polym. 181 (2018) 56. https://doi.org/10.1016/j.carbpol.2017.10.052
  29. X.-F. Zhu, J. Zheng, F. Liu, C.-Y. Qiu, W.-F. Lin, C.-H. Tang, Food Hydrocoll. 74 (2018) 37. https://doi.org/10.1016/j.foodhyd.2017.07.017
  30. J. Zhao, F. Dong, Y. Li, B. Kong, Q. Liu, Process Biochem. 50 (2015) 1607. https://doi.org/10.1016/j.procbio.2015.06.021
  31. X.-Y. Shi, H. Gao, V.I. Lazouskaya, Q. Kang, Y. Jin, L.-P. Wang, Comput. Math. Appl. 59 (2010) 2290. https://doi.org/10.1016/j.camwa.2009.08.059
  32. M.A. Khan, E.S. Lee, S.K. Park, Appl. Chem. Eng. 12 (2008) 141.
  33. M. Koroleva, A. Tokarev, E. Yurtov, Colloids Surf. A 481 (2015) 237. https://doi.org/10.1016/j.colsurfa.2015.05.005