DOI QR코드

DOI QR Code

Lumped-Parameter Thermal Analysis and Experimental Validation of Interior IPMSM for Electric Vehicle

  • Chen, Qixu (Dept. of Electrical Engineering, Xi'an Jiaotong University) ;
  • Zou, Zhongyue (Dept. of Mechanical Engineering, Xi'an Jiaotong University)
  • Received : 2017.06.03
  • Accepted : 2018.05.31
  • Published : 2018.11.01

Abstract

A 50kW-4000rpm interior permanent magnet synchronous machine (IPMSM) applied to the high-performance electric vehicle (EV) is introduced in this paper. The main work of this paper is that a 2-D T-type lumped-parameter thermal network (LPTN) model is presented for IPMSM temperature rise calculation. Thermal conductance matrix equation is generated based on calculated thermal resistance and loss. Thus the temperature of each node is obtained by solving thermal conductance matrix. Then a 3-D liquid-solid coupling model is built to compare with the 2-D T-type LPTN model. Finally, an experimental platform is established to verify the above-mentioned methods, which obtains the measured efficiency map and current wave at rated load case and overload case. Thermocouple PTC100 is used to measure the temperature of the stator winding and iron core, and the FLUKE infrared-thermal-imager is applied to measure the surface temperature of IPMSM and controller. Test results show that the 2-D T-type LPTN model have a high accuracy to predict each part temperature.

References

  1. A. Boglietti, A. Cavagnino, D. Staton, M. Shanel, M. Mueller, and C. Mejuto, "Evolution and modern approaches for thermal analysis of electrical machines," IEEE Trans. Ind. Electron., vol. 56, no. 3, pp. 871-882, Mar. 2009 https://doi.org/10.1109/TIE.2008.2011622
  2. P. D. Mellor, D. Roberts, and D. R. Turner, "Lumped parameter thermal model for electrical machines of TEFC design," Proc. Inst. Electr. Eng, B, vol. 138, no. 5, pp. 205-218, Sep. 1991.
  3. J. Nerg, M. Rilla, and J. Pyrhonen, "Thermal analysis of radial-flux electrical machines with a high power density," IEEE Trans. Ind. Electron., vol. 55, no. 10, pp. 3543-3554, Oct. 2008. https://doi.org/10.1109/TIE.2008.927403
  4. C. Jungreuthmayer, T. Bauml, O. Winter, M. Ganchev, H. Kapeller, A. Haumer, and C. Kral, "A detailed heat and fluid flow analysis of an internal permanent magnet synchronous machine by means of computational fluid dynamics," IEEE Trans. Ind. Electron., vol. 59, no. 12, pp. 4568-4578, Dec. 2012. https://doi.org/10.1109/TIE.2011.2176696
  5. A. M. EL-Refaie, N. C. Harris, T. M. Jahns, and K. M. Rahman, "Thermal analysis of multibarrier interior PM synchronous machine using lumped parameter model," IEEE Trans. Energy Convers., vol. 19, no. 2, pp. 303-309, Jun. 2004. https://doi.org/10.1109/TEC.2004.827011
  6. S. T. Scowby, R. T. Dobson, and M. J. Kamper, "Thermal modeling of an axial-flux permanent magnet machine," Appl. Thermal Eng., vol. 24, pp. 193-207, 2004. https://doi.org/10.1016/j.applthermaleng.2003.09.001
  7. N. Rostami, M.R. Feyzi, J. Pyrhonen, A. Parviainen, and M. Niemela, "Lumped-parameter thermal model for axial flux permanent magnet machines," IEEE Trans. Magn., vol. 49, no. 3, pp.1178-1184, Mar. 2013 https://doi.org/10.1109/TMAG.2012.2210051
  8. D. A. Staton and A. Cavagnino, "Convection heat transfer and flow calculations suitable for electric machines thermal models," IEEE Trans.Ind. Electron., vol. 55, no. 10, pp. 3509-3516, Oct. 2008. https://doi.org/10.1109/TIE.2008.922604
  9. D. A. Howey, P. R. N. Childs, and A. S. Holmes, "Air-gap convection in rotating electrical machines," IEEE Trans. Ind. Electron., vol. 59, no. 3, pp. 1367-1375, Mar. 2012. https://doi.org/10.1109/TIE.2010.2100337
  10. F. Marignetti,, V. D. Colli, and Y. Coia, "Design of axial flux PM synchronous machines through 3-D coupled electromagnetic thermal and fluid-dynamical finite-element analysis," IEEE Trans. Ind. Electron., vol. 55, no. 10, pp. 3591-3601, Oct. 2008. https://doi.org/10.1109/TIE.2008.2005017
  11. F. Marignetti and V. D.Colli, "Thermal analysis of an axial flux permanent-magnet synchronous machine," IEEE Trans. Magn., vol. 45, no. 7, Jul. 2009
  12. G. Zhang, H.Wei, M. Cheng, B. F. Zhang, and X.B. Guo, "Coupled magnetic-thermal fields analysis of water cooling flux-switching permanent magnet motors by an axially segmented model," IEEE Trans. Magn., vol. 53, no. 6, 8106504, June 2017.
  13. H. Vansompel, A. Rasekh, A. Hemeida, J. Vierendeels, and P. Sergeant, "Coupled electromagnetic and thermal analysis of an axial flux PM machine," IEEE Trans. Magn., vol. 51, no.11, 8108104, Nov. 2015.
  14. P.W. Han, J. H. Choi, D.J. Kim, Y.D. Chun and D. J. Bang, "Thermal analysis of high speed induction motor by using lumped-circuit parameters," Journal of Electrical Engineering & Technology, vol. 10, no. 5, pp. 2040-2045, Sep. 2015. https://doi.org/10.5370/JEET.2015.10.5.2040
  15. C.B. Park, "Thermal analysis of IPMSM with water cooling jacket for railway vehicles," Journal of Electrical Engineering & Technology, vol. 9, no. 3, pp. 882-887, May 2014. https://doi.org/10.5370/JEET.2014.9.3.882
  16. M. Polikarpova, P. Ponomarev and P. Lindh, et,al, "Hybrid cooling method of axial-flux permanentmagnet machines for vehicle applications," IEEE Trans. Ind. Electron., vol. 62, no. 12, pp. 7382-7390, Dec. 2015. https://doi.org/10.1109/TIE.2015.2465354
  17. A. B. Nachouane, A. Abdelli, G. Friedrich, and S. Vivier, "Numerical study of convective heat transfer in the end regions of a totally enclosed permanent magnet synchronous machine," IEEE Trans. Ind. Appl.,vol. 53, no. 4, pp. 3538-3547, Jul/Aug. 2017. https://doi.org/10.1109/TIA.2017.2691731
  18. B. Zhang, T. Seidler, R. Dierken, and M. Doppelbauer, "Development of a yokeless and segmented armature axial flux machine," IEEE Trans. Ind. Electron., vol. 63, no. 4, pp. 2062-2071, Apr. 2016. https://doi.org/10.1109/TIE.2015.2500194