DOI QR코드

DOI QR Code

A Coupled Recursive Total Least Squares-Based Online Parameter Estimation for PMSM

  • Wang, Yangding (Ningbo Academy of Product Quality Supervision & Inspection) ;
  • Xu, Shen (College of Electrical Engineering, Zhejiang University) ;
  • Huang, Hai (School of Information and Technology, Zhejiang Sci-Tech University) ;
  • Guo, Yiping (Ningbo Academy of Product Quality Supervision & Inspection) ;
  • Jin, Hai (School of Information and Technology, Zhejiang Sci-Tech University)
  • Received : 2017.12.04
  • Accepted : 2018.07.17
  • Published : 2018.11.01

Abstract

A coupled recursive total least squares (CRTLS) algorithm is proposed for parameter estimation of permanent magnet synchronous machines (PMSMs). TLS considers the errors of both input variables and output ones, and thus achieves more accurate estimates than standard least squares method does. The proposed algorithm consists of two recursive total least squares (RTLS) algorithms for the d-axis subsystem and q-axis subsystem respectively. The incremental singular value decomposition (SVD) for the RTLS obtained by an approximate calculation with less computation. The performance of the CRTLS is demonstrated by simulation and experimental results.

Acknowledgement

Supported by : Natural Science Foundation of Zhejiang Province of China

References

  1. J. Kim, I. Jeong, K. Lee, and N. Kwanghee, "Fluctuating current control method for a PMSM along constant torque contours," IEEE Trans. Power Electronics, vol. 29, no. 11, pp. 6064-6073, Nov. 2014. https://doi.org/10.1109/TPEL.2014.2299548
  2. O. Sandre-Hernandez, R. Morales-Caporal, J. Rangel-Magdaleno, and P. Heregrina-Barreto, "Parameter identification of PMSMs using experimental measurements and a PSO algorithm," IEEE Trans. Instrumentation and Measurement, vol. 64, no. 8, pp. 2146-2154, Aug. 2015. https://doi.org/10.1109/TIM.2015.2390958
  3. T. L. Vandoorn, F. M. D. Belie, T. J. Vyncke, et al., "Generation of multisinusoidal test signals for the identification of synchronous-machine parameters by using a voltage-source inverter," IEEE Trans. Industrial Electronics, vol. 57, no. 1, pp. 430-439, Jan. 2010. https://doi.org/10.1109/TIE.2009.2031135
  4. S. J. Underwood and I. Husain, "Online Parameter Estimation and Adaptive Control of Permanent-Magnet Synchronous Machines," IEEE Trans. Industrial Electronics, vol. 57, no. 7, pp. 2435-2443, Jul. 2010. https://doi.org/10.1109/TIE.2009.2036029
  5. S. Kallio, J. Karttunen, P. Peltoniemi and O. Pyrhonen, "Online Estimation of Double-Star IPM Machine Parameters Using RLS Algorithm," IEEE Trans. Industrial Electronics, vol. 61, no. 9, pp. 4519-4530, Sep. 2014. https://doi.org/10.1109/TIE.2013.2290761
  6. H. W. Sim, J. S. Lee and K. B. Lee, "On-line Parameter Estimation of Interior Permanent Magnet Synchronous Motor using an Extended Kalman Filter," Journal of Electrical Engineering & Technology, vol. 9, no. 2, pp. 600-608, 2014. https://doi.org/10.5370/JEET.2014.9.2.600
  7. B. Thierry, L.Nicolas, N.M. Babak and M. T. Farid, "Online identification of PMSM parameters: Parameter identifiability and estimator comparative study," IEEE Trans. Industry Applications, vol. 47, no. 4, pp. 1944-1957, Jul. 2011. https://doi.org/10.1109/TIA.2011.2155010
  8. K. Liu and Z. Q. Zhu, "Position-Offset-Based Parameter Estimation Using the Adaline NN for Condition Monitoring of Permanent-Magnet Synchronous Machines," IEEE Trans. Industrial Electronics, vol. 62, no. 4, pp. 2372-2383, Apr. 2015. https://doi.org/10.1109/TIE.2014.2360145
  9. Z. H. Liu, H. L. Wei, Q. C. Zhong, et al., "Parameter Estimation for VSI-Fed PMSM Based on a Dynamic PSO With Learning Strategies," IEEE Trans. Power Electronics, vol. 32, no. 4, pp. 3154-3165, Nov. 2017. https://doi.org/10.1109/TPEL.2016.2572186
  10. D. Q. Dang, M. S. Rafaq, H. H. Choi and J. W. Jung, "Online Parameter Estimation Technique for Adaptive Control Applications of Interior PM Synchronous Motor Drives," IEEE Trans. Industrial Electronics, vol. 63, no. 3, pp. 1438-1449, Mar. 2016. https://doi.org/10.1109/TIE.2015.2494534
  11. R. Arablouei, K. Dogancay and S. Werner, "Recursive Total Least-Squares Algorithm Based on Inverse Power Method and Dichotomous Coordinate-Descent Iterations," IEEE Trans. Signal Processing, vol. 63, no. 8, pp. 1941-1949, Aug. 2015. https://doi.org/10.1109/TSP.2015.2405492
  12. T. Kim, Y. Wang, Z. Sahinoglu, et al., "A Rayleigh Quotient-Based Recursive Total-Least-Squares Online Maximum Capacity Estimation for Lithium-Ion Batteries," IEEE Trans. Energy Conversion, vol. 30, no. 3, pp. 842-851, Aug. 2015. https://doi.org/10.1109/TEC.2015.2424673
  13. S. Rhode, F. Gauterin, "Online Estimation of Vehicle Driving Resistance Parameters with Recursive Least Squares and Recursive Total Least Squares," in IEEE Intelligent Vehicles Symposium, Gold Coast, Australia, June 2013.
  14. M. Brand, "Incremental singular value decomposition of uncertain data with missing values," in Proceedings of ECCV2001 Conference, Copenhagen, Denmark, May 2002.
  15. H. Wu, S. X. Chen, H. Y. Zhang, et al., "Robust recursive total least squares passive location algorithm," Journal of Central South University (Science and Technology), vol. 46, no. 3, pp. 886-893, Mar. 2015.
  16. T. Soderstrom, "Errors-in-variables methods in system identification," Automatica, vol. 43, no. 6, pp. 939-958, Jun. 2007. https://doi.org/10.1016/j.automatica.2006.11.025
  17. Z. W. Shi, Y. Wang, and Z. C. Ji, "Bias compensation based partially coupled recursive least squares identification algorithm with forgetting factors for MIMO systems: Application to PMSMs," Journal of the Franklin Institute, vol. 353, no. 13, pp. 3057-3077, Mar. 2016. https://doi.org/10.1016/j.jfranklin.2016.05.021
  18. B. Stumberger, G. Stumberger, D. Dolinar, et al., "Evaluation of Saturation and Cross-Magnetization Effects in Interior Permanent-Magnet," IEEE Trans. Industry Applications, vol. 39, no. 5, pp. 1264-1271, Sep. 2003. https://doi.org/10.1109/TIA.2003.816538
  19. A. Rabiei, T.Thiringer, M. Alatalo, et al., "Improved Maximum-Torque-Per-Ampere Algorithm Accounting for Core Saturation, Cross-Coupling Effect, and Temperature for a PMSM Intended for Vehicular Applications," IEEE Trans. Transportation Electrification, vol. 2, no. 2, pp. 150-159, Jun. 2016. https://doi.org/10.1109/TTE.2016.2528505
  20. R. Krishnan, Permanent Magnet Synchronous and Brushless DC Motor Drives: CRC, 2010, pp. 226-231.