DOI QR코드

DOI QR Code

Electrical and Thermo-mechanical Properties of DGEBA Cycloaliphatic Diamine Nano PA and SiO2 Composites

  • Trnka, Pavel (Faculty of Electrical Engineering, University of West Bohemia) ;
  • Mentlik, Vaclav (Faculty of Electrical Engineering, University of West Bohemia) ;
  • Harvanek, Lukas (Faculty of Electrical Engineering, University of West Bohemia) ;
  • Hornak, Jaroslav (Faculty of Electrical Engineering, University of West Bohemia) ;
  • Matejka, Libor (Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic)
  • Received : 2017.11.03
  • Accepted : 2018.06.04
  • Published : 2018.11.01

Abstract

This study investigates a new organic based material and its dielectric and mechanical properties. It is a comprehensive nanocomposite comprising a combination of various types of nanofillers with hydrophobic silica nanoparticles (AEROSIL R 974) as a matrix modifier and a polyamide nano nonwoven textile, Ultramid-Polyamide 6, pulped in the electrostatic field as a dielectric barrier. The polymer matrix is an epoxy network based on diglycidyl ether of bisphenol A (DGEBA) and cycloaliphatic diamine (Laromine C260). The designed nanocomposite material is an alternative to the conventional three-component composites containing fiberglass and mica with properties that exceed current electroinsulating systems (volume resistivity on the order of $10^{16}{\Omega}{\cdot}m$, dissipation factor tan ${\delta}=4.7{\cdot}10^{-3}$, dielectric strength 39 kV/mm).

Acknowledgement

Supported by : West Bohemia University in Pilsen

References

  1. R. Brutsch, M. Tari, K. Frohlich, T. Weiers, R. Vogelsang, "Insulation failure mechanisms of power generators," IEEE Elect. Insul. Mag., vol. 24, no. 4, pp. 17-25, Jul.-Aug. 2008. https://doi.org/10.1109/MEI.2008.4581636
  2. C. M. Laffoon, C. F. Hill, G. Lee Moses, L. J. Berberich, "A new high-voltage insulation for turbinegenerator stator windings," Trans. Am. Inst. Electr. Eng., vol. 70, no. 1, pp. 721-730, Jul. 1951. https://doi.org/10.1109/T-AIEE.1951.5060468
  3. B. Dewimille and A.R. Bunsell, "Accelerated ageing of a glass fibre-reinforced epoxy resin in water," Composites, vol. 14, no. 1, pp. 35-40, Jan. 1983. https://doi.org/10.1016/0010-4361(83)90141-6
  4. G. C. Stone, I. Culbert, E A. Boulter, H. Dhirani, "Electrical Insulation for Rotating Machines:Design, Evaluation, Aging, Testing, and Repair," Wiley-IEEE Press: Piscataway, 2014, pp. 111-131.
  5. R. L. Griffeth, E. R. Younglove, "The manufacture and processing of mica paper for use in electrical insulation," in Proc. COI, 1951, pp. 22-23.
  6. N. Andraschek, A. J. Wanner, C. Ebner, G. Riess, "Mica/epoxy-composites in the electrical industry: applications, composites for insulation, and investigations on failure mechanisms for prospective optimizations," Polymers, vol. 8, pp. 1-21, Aug. 2016.
  7. Z. Jia, Y. Hao, H. Xie, "The degradation assessment of epoxy/mica insulation under multi-stresses aging," in IEEE Trans. Dielectr. Electr. Insul., vol. 13, no. 2, pp. 415-422, Apr. 2006. https://doi.org/10.1109/TDEI.2006.1624287
  8. R. Goetter. M. Winkeler, "New developments in unsaturated polyester resins used for electrical insulation," in Proc. EEIC, 2001, pp. 51-56.
  9. G. H. Miller, "Silicone resin rich mica paper laminates for class H operation and radiation resistance," in Proc. EIC, 1975, pp. 273-275.
  10. L. Harvanek, "Nanomaterials for electrotechnic," Doctoral Dissertation, University of West Bohemia, Pilsen, 2017.
  11. V. Boucher, P. Rain, G. Teissedre, P. Schlupp, "Mechanical and dielectric properties of glass-micaepoxy composites along accelerated thermo-oxidative aging," in Proc. ICSD, 2007, pp. 162-165.
  12. International Electrotechnical Commission, "Electrical Insulation - Thermal Evaluation and Designation" IEC Standard 60085:2007, Nov. 7, 2007.
  13. J. Dong, Z. Shao, Y. Wang, Z. Lv, X. Wang, K. Wu, We. Li, C. Zhang, "Effect of temperature gradient on space charge behavior in epoxy resin and its nanocomposites," IEEE Trans. Dielectr. Electr. Insul., vol. 24, no. 3, pp. 1537-1546, Jun. 2017. https://doi.org/10.1109/TDEI.2017.006138
  14. D. R. Johnston, M. Markovitz, "Corona-resistant insulation, electrical conductors covered therewith and dynamoelectric machines and transformers incorporating components of such insulated conductors," US Patent 4760296, Jul. 26, 1988.
  15. P. O. Henk, T. W. Korsten, T. Kvarts, "Increasing the electrical discharge endurance of acid anhydride cured DGEBA epoxy resin by dispersion of nanoparticle silica," High Perform. Polym. vol. 11, no. 3, pp. 281-296, Sept. 1999. https://doi.org/10.1088/0954-0083/11/3/304
  16. T. G. Lewis, "Nanometric dielectrics," IEEE Trans. Dielectr. Electr. Insul.. vol. 1, no. 5, pp. 812-825, Oct. 1994. https://doi.org/10.1109/94.326653
  17. J. K. Nelson, J. Fothergill, L. A. Dissado, W. Peasgood, "Towards an understanding of nanometric dielectrics," in Proc. CEIDP, 2002, pp. 295-298.
  18. T. Tanaka, T. Imai, "Advances in nanodielectric materials over the past 50 years," IEEE Elect. Insul. Mag., vol. 29, no. 1, pp. 10-23, Jan.-Feb. 2013. https://doi.org/10.1109/MEI.2013.6410535
  19. S. Yu, P. Hing, "Thermal and dielectric properties of fiber reinforced polystyrene composites," Polym. Compos., vol. 29, no. 11, pp. 1199-1202, Nov. 2008. https://doi.org/10.1002/pc.20527
  20. G. G. Raju, "Dielectrics in Electric Fields," Boca Raton: CRC Press, Taylor & Francis Group, 2016.
  21. R. Stewart, "Thermoplastic composites - recyclable and fast to process," Reinf. Plast., vol. 55, no. 3, pp. 22-28, May-Jun. 2011. https://doi.org/10.1016/S0034-3617(11)70073-X
  22. R. B. Valapa, S. Loganathan, G. Pugazhenthi, S. Thomas, T.O. Varghese. "An overview of polymer-clay nanocomposites," Clay-Polymer Nanocomposites. Amsterdam: Elsevier. pp. 29-81, 2017.
  23. A. C. Biju, T. A. A. Victoire, D. E. Salvaraj, "Enhancement of dielectric properties of polyamide enamel insulation in high voltage apparatuses used in medical electronics by adding nano composites of $SiO_2$ and $Al_2O_3$ fillers," J. Electr. Eng. Technol., vol. 10, no. 4, Jul. 2015.
  24. S. K. Singh, S. Sing, A. Kumar, A. Jain, "Thermo-mechanical behavior of $TiO_2$ dispersed epoxy composites," Eng. Fract. Mech., vol. 184, pp. 241-248, Oct. 2017. https://doi.org/10.1016/j.engfracmech.2017.09.005
  25. N. Loganathan, S. Chandrasekar, "Analysis of surface tracking of micro and nano size alumina filled silicone rubber for high voltage AC transmission," J. Electr. Eng. Technol., vol. 8, no. 2, Mar. 2013.
  26. W. Yang. R. Yi, X. Yang, M. Xu, S. Hui, X. Cao, "Effect of particle size and dispersion on dielectric properties in ZnO/epoxy resin composites," Trans. Electr. Electron. Mater., vol. 13, no. 3, pp. 116-120, Jun, 2012. https://doi.org/10.4313/TEEM.2012.13.3.116
  27. T. Andritsch, R. Kochetov, P. H. F. Morshuis, J. J. Smit, "Dielectric properties and space charge behavior of MgO-epoxy nanocomposites," in Proc. ICSD, 2010, pp. 1-4.
  28. I. A. Tsekmes, R. Kochetov, P. H. F. Morshuis, J. J. Smit, "AC breakdown strength of epoxy-boron nitride nanocomposites: Trend & reproducibility," in Proc. EIC, 2015, pp. 446-449.
  29. J. Bocek, L. Matejka, V. Mentlik, P. Trnka, M. Slouf, "Electrical and thermomechanical properties of epoxy-POSS nanocomposites," Eur. Polym. J., vol. 47, no. 5, May 2011.
  30. A. S. Vaughan, G. Gherbaz, S. G. Swingler, N. A. Rashid, "Polar/non-polar polymer blends: on structural evolution and the electrical properties of blends of polyethylene and ethylene - vinyl acetate," in Proc. CEIDP, 2006, pp. 272-275.
  31. K. Nam, J. Cho, H. Yeo, "Thermomechanical behavior of polymer composites based on edge-eselectively functionalized graphene nanosheets". Polymers, vol 10, no. 1. pp. 1-11, Jan. 2018. https://doi.org/10.3390/polym10010011
  32. M. Liang, K. L. Wong, "Study of mechanical and thermal performances of epoxy resin filled with micro particles and nanoparticles," Energy Procedia, vol. 110, pp. 156-161, March 2017. https://doi.org/10.1016/j.egypro.2017.03.121
  33. M. H. Alaei, P. Mahajan, M. Brieu, D. Kondo, S. J. A. Rizvi, S. Kumar, N. Bhatnagar, "Effect of particle size on thermomechanical properties of particulate polymer composite," Iran. Polym. J., vol. 22, n. 11, pp. 853-863. Nov. 2013. https://doi.org/10.1007/s13726-013-0184-9
  34. G. Liu, G. H. Zhang, D. Zhang, Z. Zhang, X. An, X. Yi, "On depression of glass transition temperature of epoxy nanocomposites," J. Mater. Sci., vol. 47, no. 19, pp. 6891-6895, Oct. 2012. https://doi.org/10.1007/s10853-012-6633-6
  35. C. Zou, J. C. Fothergill, S. W. Rowe, "The effect of water absorption on the dielectric properties of epoxy nanocomposites," IEEE Trans. Dielectr. Electr. Insul., vol. 15, no. 1, pp. 106-117, Feb. 2008. https://doi.org/10.1109/T-DEI.2008.4446741
  36. E. Marsano, L. Francis, F. Giunco, "Polyamide 6 nanofibrous nonwovens via electrospinning," J. Appl. Polym. Sci., vol. 117, no. 3, pp. 1754-1765, Aug. 2010. https://doi.org/10.1002/app.32118
  37. International Electrotechnical Commission, "Dielectric and resistive properties of solid insulating materials - Part 3-2: Determination of resistive properties (DC methods)," IEC Standard 62631-3-2:2015, Apr. 12, 2015.
  38. International Electrotechnical Commission, "Recommended methods for the determination of the permittivity and dielectric dissipation factor of electrical insulating materials at power, audio and radio frequencies including metre wavelengths," IEC Standard 60250:1969, Jan. 1, 1969.
  39. International Electrotechnical Commission, "Methods of test for electric strength of solid insulating materials," IEC Standard 60243-1, Mar. 26, 2013.
  40. V.I. Ushakov, "Insulation of High-Voltage Equipment," New York: Springer, 2004, pp. 11-15.
  41. J. Artbauer, "Electric strength of polymers," J. Phys. D., vol. 29, no. 2, pp. 446-56, Feb. 1996. https://doi.org/10.1088/0022-3727/29/2/024
  42. J. K. Nelson, Y. Huang, T.M. Krentz, L. S. Schadler, J. Dryzek, B. C. Benicewicz, M. Bell, "Free volume in nanodielectrics," in Proc. ICPADM, 2015, pp. 40-43.