DOI QR코드

DOI QR Code

Changes in Growth and Antioxidant Contents of Romaine Lettuce by Different UV Spectra

  • Jeong, Sung Woo (Research Institute of Industrial Science & Technology(RIST))
  • Received : 2018.08.13
  • Accepted : 2018.09.05
  • Published : 2018.10.31

Abstract

The current study was conducted to determine the influence of irradiations of different UV spectra on plant growth and antioxidant compounds of two romaine lettuce cultivars('Caesar green' and 'Caesar red'). The UV treatments were consisted of three UV spectra; UV-A (314-400nm), FUV-B (290-400nm) and UV-B (274-400nm), using fluorescent lamps and irradiated for 2 hours at nighttime for 11 days under greenhouse. As the results, there were no differences in growth parameters and antioxidant compounds between UV-A treatments and control in two cultivars. On the other hand, FUV-B treatment increased significantly the contents of UV absorbing compounds, ${\beta}$-carotene, lutein, total phenolic compounds and anthocyanin in caesar green cultivar. It also increased UV absorbing compounds, total phenolic compounds and anthocyanin contents in caesar red cultivar without any growth reduction. UV-B treatment, however, decreased lutein, chlorophyll contents and caused growth reduction and physiological damage such as leaf chlorosis and wrinkle in both cultivars. Overall, the results indicate that supplemental FUV-B treatment, at least in part, may increase antioxidant compounds without any inhibitory effect on shoot growth in romaine lettuce. The results of the current study present a useful practical technique for increasing antioxidant compounds of romaine lettuce production in greenhouse horticulture.

Acknowledgement

Supported by : Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry (IPET)

References

  1. Barsig, M. and R. Malz. 2000. Fine structure, carbohydrates and photosynthetic pigments of sugar maize leaves under UV-B radiation. Environ. Exp. Bot. 43:121-130. https://doi.org/10.1016/S0098-8472(99)00049-0
  2. Behn, H., S. Tittmann, A. Walter, U. Schurr, G. Noga, and A. Ulbrich. 2010. UV-B transmittance of greenhouse covering materials affects growth and flavonoid content of lettuce seedlings. Eur. J. Hortic. Sci. 75(6):259-268.
  3. Caldwell, C.R. and S.J. Britz. 2006. Effect of supplemental ultraviolet radiation on the carotenoid and chlorophyll composition of greenhouse-grown leaf lettuce (Lactuca sativa L.) cultivars. J. Food Compos. Anal. 19:637-644. DOI:10.1016/j.jfca.2005.12.016 https://doi.org/10.1016/j.jfca.2005.12.016
  4. Cen, Y.P. and J.F. Bornman. 1993. The effects of exposure to enhanced UV-B radiation on the penetration of monochromatic and polychromatic UV-B radiation in leaves of Brassica napus. Physiol. Plant. 87:249-255. DOI:10.1111/j.1399-3054.1993.tb01727.x https://doi.org/10.1111/j.1399-3054.1993.tb01727.x
  5. Ervin, E.H., X. Zhang, and J.H. Fike. 2004. Ultraviolet-B radiation damage on Kentucky bluegrass. III. cultivar effects. HortScience 39(6):1475-1477.
  6. Green, A.E.S., T. Sawada, and E.P. Shettle. 1974. The middle ultraviolet reaching the ground. Photochem. Photobiol. 19(4):251-259. DOI:10.1111/j.1751-1097.1974.tb06508.x https://doi.org/10.1111/j.1751-1097.1974.tb06508.x
  7. Jain, K., S. Kataria, and K.N. Guruprasad. 2003. Changes in antioxidant defenses of cucumber cotyledons in response to UV-B and to the free radical generating compound AAPH. Plant Sci. 165(3):551-557. DOI:10.1016/S0168-9452(03)00214-0 https://doi.org/10.1016/S0168-9452(03)00214-0
  8. Jeong, S.W., S.W. Hogewoning, and W. van Ieperen. 2014. Responses of supplemental blue light on flowering and stem extension growth of cut chrysanthemum. Sci. Hortic. 165:69-74. DOI:10.1016/j.scienta.2013.11.006 https://doi.org/10.1016/j.scienta.2013.11.006
  9. Jeong, S.W. and M.R. Huh. 2010. Growth inhibition and seedling injury in response to UV spectra and irradiation timing in plug-transplants of pepper (Capsicum annunm L.) and tomato (Solanum lycopersicum). J. Jpn. Soc. Hortic. Sci. 79(1):40-46. DOI:10.2503/jjshs1.79.40 https://doi.org/10.2503/jjshs1.79.40
  10. Joshi, P.N., N.K. Ramaswamy, R.K. Iyer, J.S. Nair, M.K. Pradhan, S. Gartia, B. Biswal, and U.C. Biswal. 2007. Partial protection of photosynthetic apparatus from UV-B-induced damage by UV-A radiation. Environ. Exp. Bot. 59(2):166-172. DOI:10.1016/j.envexpbot.2005.11.005 https://doi.org/10.1016/j.envexpbot.2005.11.005
  11. Kakani, V.G., K.R. Reddy, D. Zhao, and K. Sailaja. 2003. Field crop responses to ultraviolet-B radiation: A review. Agric. For. Meteorol. 120(1):191-218. DOI:10.1016/j.agrformet.2003.08.015 https://doi.org/10.1016/j.agrformet.2003.08.015
  12. Kim, H.Y. and M.S. Cho. 2001. Effects of enhanced ultraviolet-B radiation on plants. J. Bio-environ. Control 10(3):197-206.
  13. Krizek, D.T., S.J. Britz, and R.M. Mirecki. 1998. Inhibitory effects of ambient levels of solar UV-A and UV-B radiation on growth of cv. New Red Fire lettuce. Physiol. Plant. 103(1):1-7. DOI:10.1034/j.1399-3054.1998.1030101.x https://doi.org/10.1034/j.1399-3054.1998.1030101.x
  14. Krizek, D.T., R.M. Mirecki, and S.J. Britz. 1997. Inhibitory effects of ambient levels of solar UV-A and UV-B radiation on growth of cucumber. Physiol. Plant. 100(4):886-893. DOI:10.1111/j.1399-3054.1997.tb00014.x https://doi.org/10.1111/j.1399-3054.1997.tb00014.x
  15. Lee, S.Y., S.J. Lee, S.M. Seo, S.W. Lee, and S.W. Sim. 1999. Reusing techniques of nutrient solution for recycling hydroponic culture of lettuce. J. Bio-environ. Control 8(3):172-182.
  16. Lichtenthaler, H.K. 1987. Chlorophyll and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol. 148:350-382. DOI:10.1016/-0076-6879(87)48036-1
  17. Park, J.S., M.G. Choung, J.B. Kim, B.S. Hahn, J.B. Kim, S.C. Bae, K.H. Rho, Y.H. Kim, C.I. Cheon, M.K. Sung, and K.J. Cho. 2007. Genes up-regulated during red coloration in UV-B irradiated lettuce leaves. Plant Cell Rep. 26(4):507-516. https://doi.org/10.1007/s00299-006-0255-x
  18. Rabino, I. and A.L. Mancinelli. 1986. Light, temperature, and anthocyanin production. Plant Physiol. 81(3):922-924. https://doi.org/10.1104/pp.81.3.922
  19. Singh, A., M.T. Selvi, and R. Sharma. 1999. Sunlight-induced anthocyanin pigmentation in maize vegetative tissues. J. Exp. Bot. 50(339):1619-1625. DOI:10.1093/jxb/50.339.1619 https://doi.org/10.1093/jxb/50.339.1619
  20. Smith, J.L., D.J. Burritt, and P. Bannister. 2000. Shoot dry weight, chlorophyll and UV-B absorbing compounds as indicators of a plant's sensitivity to UV-B radiation. Ann. Bot. 86(6):1057-1063. DOI:10.1006/anbo.2000.1270 https://doi.org/10.1006/anbo.2000.1270
  21. Stepleton, A.E. 1992. Ultraviolet radiation and plants: Burning questions. Plant Cell 4(11):1353-1358. DOI:10.1105/tpc.4.11.1353 https://doi.org/10.1105/tpc.4.11.1353
  22. Yao, Y., Y. Yang, J. Ren, and C. Li. 2006. UV-spectra dependence of seedling injury and photosynthetic pigment change in Cucumis sativus and Glycine max. Environ. Exp. Bot. 57(1-2):160-167. DOI;10.1016/j.envexpbot.2005.05.009 https://doi.org/10.1016/j.envexpbot.2005.05.009
  23. Yun, H.K., Y.C. Kim, T.C. Seo, S.G. Lee, K.Y. Kim, and J.G. Lee. 2003. Effects of various kinds of ultraviolet irradiation on growth and antioxidant contents of some leafy vegetables. Korean J. Hortic. Sci. Technol. 21(2):94-97.
  24. Zhang, X., E.H. Ervin, and R.E. Schmidt. 2005. The role of leaf pigment and antioxidant levels in UV-B resistance of dark-and light-green Kentucky bluegrass cultivars. J. Am. Soc. Hortic. Sci. 130(6):836-841.