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SKEW CYCLIC CODES OVER Fp + vFp + v2Fp

Hamed Mousavi, Ahmad Moussavi, and Saeed Rahimi

Abstract. In this paper, we study an special type of cyclic codes called

skew cyclic codes over the ring Fp + vFp + v2Fp, where p is a prime

number. This set of codes are the result of module (or ring) structure
of the skew polynomial ring (Fp + vFp + v2Fp)[x; θ] where v3 = 1 and

θ is an Fp-automorphism such that θ(v) = v2. We show that when n is
even, these codes are either principal or generated by two elements. The

generator and parity check matrix are proposed. Some examples of linear

codes with optimum Hamming distance are also provided.

1. Introduction

Cyclic codes are an important class of codes from both a theoretical and
practical viewpoint. Traditionally, cyclic codes have been studied over finite
fields. Polynomial rings and their ideals are essential to the construction and
understanding of cyclic codes. These codes are applicable because they are
easy to design and can detect or correct in an efficient index. They are used in
a lot of applications like wireless sensor networks, steganography, burst errors,
etc., (For example, see [13], [17]).

There are a lot of works about cyclic codes over rings in [2,3,7,14,15,18]. This
is because of the fact that polynomials over rings have more divisors and the
length of the code has less limitation over the ring. These codes can propose
a lot of optimum linear codes. Also, the algebraic structure of these codes
are very easy to study, because the cyclic codes over the ring R with length

n correspond with the submodules of the module R[x]
〈xn−1〉 , which is studied a

lot of cases in the literature. These advantages lead the researchers to study
different classes of cyclic code category like constacyclic as in [10], negacyclic
codes as [2], quasi cyclic codes [8], etc.

One of the interesting types of generalizing of the notion of cyclic codes is
skew cyclic codes which were proposed by Boucher in [4]. For the first time
in [6] non commutative skew polynomial rings have been used to construct
(a generalization of) cyclic codes. These non commutative rings are of the
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category of Ore rings. Recall that a skew cyclic code over an arbitrary ring S
with an endomorphism θ is a linear code C such that, when (c0, c1, c2, . . . , cn) ∈
C it implies that (θ(cn), θ(c0), . . . , θ(cn−1)) ∈ C.

For a given automorphism θ of R, the set R[x; θ] consisting of polynomials
f = a0 + a1x + · · · + anx

n, with ai ∈ R forms a ring under usual addition of
polynomials and multiplication defined by the rule (axi)(bxj) = aθi(b)xi+j for
each a, b ∈ R, and is called the skew polynomial ring over R.

Boucher also introduced different types of skew cyclic codes in [5,6]. Then in
the papers [9], [11], [12], and [16], the skew cyclic codes over different rings are
proposed. Skew cyclic codes with length n over the ringR are the submodules of
R[x;θ]
〈xn−1〉 . The module R[x;θ]

〈xn−1〉 is not necessarily a ring, unless xn−1 ∈ Center(R).

The main reason of usefulness of these codes is that these codes usually are not
unique factorization domains and have even more divisors than their similar
cyclic structures. This results in more possibility to define new generator poly-
nomials. This may cause new codes with larger minimum Hamming distance.
As an example, in [1] or [5], the authors could introduce some codes over finite
fields, which has better performance than the best known linear codes with the
same parameters.

In this paper, we study the skew cyclic codes over the ring R = Fp + vFp +
v2Fp where v3 = 1. We propose the center of R to find the cases that this
structure of skew cyclic codes is an ideal. Also, we will find the structure of
the ideals of (Fp + vFp + v2Fp)[x; θ] where θ is an Fp-automorphism such that
θ(v) = v2 (i.e., θ2 = 1). Then we try to show the cases a skew cyclic code is
a quasi cyclic code. We also give some information about the case that the

module
(Fp+vFp+v

2Fp)[x;θ]
〈xn−1〉 is not a ring. We show that skew cyclic codes are

submodules of the mentioned module. Finally, we propose some examples of
optimum codes.

If F is a field, it is proved that codes are in fact the submodules of F[x;θ]
〈xn−1〉 (e.g.,

see [4]). We prove the same result for the skew cyclic codes over Fp+vFp+v2Fp.
Also for each ring R, R[x;θ]

〈xn−1〉 is a ring if and only if xn − 1 ∈ Center(R[x; θ]).

So we need to find the center of R, if we want to exploit the ring structure of
skew cyclic codes.

The Hamming distance of U = (u0, . . . , un−1), V = (v0, . . . , vn−1) over a
ring T , is the cardinality of the set {i | vi 6= ui}. Also the Lee distance U, V is:

dL(U, V ) =
∑n−1
i=0 |ui − vi|, where | · | means a metric over T .

2. The structure of ideals of the ring
(Fp+vFp+v

2Fp)[x;θ]

〈xn−1〉

Let p be a prime number and Fp be a finite field. Then the ring Fp + vFp +

v2Fp where v3 = 1, is in fact the ring
Fp[v]
〈v3−1〉 . To produce a skew polynomial

version of this ring, we need the following.
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Theorem 2.1. Let θ : Fp+vFp+v2Fp −→ Fp+vFp+v2Fp with θ(a+bv+cv2) =
a+ bv2 + cv. Then θ is a ring automorphism.

Proof. First, we prove that θ is linear. To do this, let a+bv+cv2, f+gv+hv2 ∈
Fp + vFp + v2Fp. Then

θ(a+ bv + cv2) + θ(f + gv + hv2) = a+ bv2 + cv + f + gv2 + hv

= (a+ f) + (c+ h)v + (b+ g)v2

= θ((a+ f) + (b+ g)v + (c+ h)v2).(1)

So θ is additive.
One can see that the following equations hold for each a, b, c, d, f, g, h ∈ Fp :

θ(a+ bv + cv2)θ(f + gv + hv2)

= (a+ bv2 + cv)(f + gv2 + hv)

= (ch+ ag + bf)v2 + (ah+ bg + cf)v + af + bh+ cg

= θ((ch+ ag + bf)v + (ah+ bg + cf)v2 + af + bh+ cg)

= θ((a+ bv + cv2)(f + gv + hv2)).

Also, for each a+ bv + cv2, we have θ(a+ cv + bv2) = a+ bv + cv2. Moreover,
θ(a+ bv + cv2) = a+ cv + bv2 = 0 if and only if a = b = c = 0. �

Throughout this paper, R will denote the ring Fp + vFp + v2Fp and S the

ring (Fp + vFp + v2Fp)[x; θ], and Sn will denote
(Fp+vFp+v

2Fp)[x;θ]
〈xn−1〉 .

Also, let g ∈ S. Then supp(g) = {gi | gi 6= 0, i ∈ N ∪ {0}}. Let U(R) be the
set of unit elements of R. Now we determine the center of S.

Theorem 2.2. The center of S is Fp[x2] +A where A = {g ∈ S | gi = (1 + v+
v2)ai, ai ∈ Fp[x2]}.

Proof. Let g ∈ Fp[x2]. So g(x) =
∑
i g2ix

2i where g2i ∈ Fp. Assume that
h(x) =

∑
i hix

i ∈ S (i.e., hi ∈ R). So

(hg)(x) =
∑
i,j

hiθ
i(g2j)x

i+2j =
∑
i,j

hig2jx
i+2j .

The last equality is rooted from the fact that θ fixes Fp. Also,

(gh)(x) =
∑
i,j

g2jθ
2j(hi)x

2j+i =
∑
i,j

g2jhix
2j+i.

So Fp[x2] ⊆ Center(S). Now, let g ∈ A and h ∈ S. So g(x) =
∑
i ai(1 + v +

v2)x2i and h(x) =
∑
i hix

i. Thus

h(x)g(x) =
∑
i,j

hiθ
i(aj(1 + v + v2))xi+2j

=
∑
i,j

(hi,1 + vhi,2 + v2hi,3)aj(1 + v + v2)xi+2j .
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Since v(1 + v + v2) = 1 + v + v2,

h(x)g(x) =
∑
i,j

(hi,1 + hi,2 + hi,3)aj(1 + v + v2)xi+2j .

Also

g(x)h(x) =
∑
i,j

aj(1 + v + v2)θj(hi)x
i+2j

=
∑
i,j

aj(1 + v + v2)θj(hi,1 + vhi,2 + v2hi,3)xi+2j

=
∑
i,j

aj(1 + v + v2)(hi,1 + hi,2 + hi,3)xi+2j .

So A ⊆ Center(S).
Let g /∈ Fp[x2] +A. Then we have a couple of cases:
Case (1): There exists g2i+1 ∈ supp(g) such that g2i+1 6= 0, and g2i+1 6=

a2i+1(1 + v + v2). Assume that g(x) = g2i+1x
2i+1 + h(x), h(x) ∈ S and

h2i+1 = 0.
If g ∈ Center(S), then g(x)v = vg(x). This means that

g2i+1θ(v)x2i+1 + h(x)v = (g2i+1x
2i+1 + h(x))v = v(g2i+1x

2i+1 + h(x)).

So θ(v)g2i+1 = v2g2i+1 = vg2i+1. This solution has an answer, if g2i+1 =
a2i+1(1 + v + v2) or g2i+1 = 0. So there is no g2j+1 ∈ supp(g) such that
g2j+1 6= a2j+1(1 + v + v2).

Case (2): There exists g2i ∈ supp(f) such that g2i /∈ Fp and g2i 6= a2i(1 +
v + v2). Since xg = gx, one can see that

x
∑
i

gix
i =

∑
i

gix
i+1.

So θ(g2i) = g2i. If g2i = a+ bv+ cv2, then a+ bv2 + cv = a+ bv+ cv2. Hence,
b = c. Thus g2i = a+ b(1 + v)v. Also vxg = gvx. So

vx
∑
i

gix
i =

∑
i

gix
ivx =

∑
i

giθ
i(v)xi+1.

This means that vθ(g2i) = g2iθ
2i(v) = g2iv. So v(a + bv2 + bv) = a + bv +

bv2. Thus a = b and g2i = a2i(1 + v + v2) which is a contradiction. Hence
Center(S) = Fp[x2] +A. �

Next corollary describes the cases that R[x;θ]
xn−1 is a ring.

Corollary 2.3. We have xn − 1 ∈ Center(S) if and only if 2|n. Hence R[x;θ]
xn−1

is a ring if and only if 2|n. Otherwise, it is just an R-module. In particular,
the skew cyclic codes over R are the ideals of Sn if and only if n is even.

Theorem 2.4. Let f, g ∈ S. If the leading coefficient of g is unit, then there
exist unique q, r ∈ S such that f = qg + r, deg(g) > deg(r).
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Proof. The proof is similar to the one in [5] for Galois rings. Let f(x) =∑m
i=0 fix

i, g(x) =
∑k
i=0 gix

i. If m = 0, then it remains nothing to prove. So
assume inductively that the result holds for integers less than m. Then the
degree of h = f − fm

θm−k(gk)
xm−kg is less than the degree of f . So there exist

q, r ∈ S such that h = qg + r and deg(r) < deg(g). So

f =

(
fm

θm−k(gk)
xm−k + q

)
g + r.

Now let f = q1g + r1 = q2g + r2. So (r1 − r2) = (q2 − q1)g. Since gk is unit, if
q1 6= q2, deg(r1 − r2) = deg((q1 − q2)g) ≤ deg(g). This is impossible and the
proof is complete. �

Definition. A subset C of Rn is called a skew cyclic code of length n if C
satisfies the following conditions:

(1) C is a submodule of Rn.
(2) If c = (c0, c1, . . . , cn−1) ∈ C, then the skew cyclic shift

(θ (cn−1) , θ (c0) , . . . , θ (cn−2)) ∈ C.
The next theorem gives a characterization of those codes which are skew

cyclic:

Theorem 2.5. The code C is a skew cyclic code with length n over R if and
only if C is a Sn-submodule of Sn = S

〈xn−1〉 .

Proof. Let C be a skew cyclic code over R. Let h(x) =
∑
i hix

i ∈ C and
g(x) =

∑
i gix

i ∈ Sn. Then

(gh)(x) =
∑
i

gix
ih(x).

Since C is cyclic, xih(x) ∈ C, and as C is linear we get
∑
i gix

ih(x) ∈ C. So
gh ∈ C. Also since C is linear, if h1, h2 ∈ C we have h1 − h2 ∈ C.

Now assume that C is a submodule of Sn. Then C is closed under addition
(i.e., C is a linear code). Also since C is an ideal, xC ⊆ C. So C is a skew
cyclic code. �

Corollary 2.6. If n is even, then every skew cyclic code of length n over R is
an ideal of Sn.

Proof. Since n is even, Sn will be a ring and its submodules are ideals. �

Theorem 2.7. Let C be a skew cyclic code over R with length n and n is even.
If f is the polynomial with the least degree in C and its leading coefficient is
unit, then C = Snf .

Proof. Let h ∈ C. Since the leading coefficient of f is a unit, there exist q, r ∈
Sn such that h = qf + r and deg(r) < deg(f). The facts that r = h− qf ∈ C
and f is the least degree of the polynomials, it yields that r = 0. So h = qf . �
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Theorem 2.8. The element a+ bv+ cv2 is a zero divisor of Fp + vFp + v2Fp,
if and only if a, b, c satisfy in the equation a3 + b3 + c3 − 3abc = 0.

Proof. Let (a+ bv + cv2)(f + vg + v2h) = 0. So af + cg + bh = 0
ag + bf + ch = 0
cf + bg + ah = 0.

Hence, they satisfy the following matrix equationa c b
b a c
c b a

fg
h

 =

0
0
0

 .
If this system of equations has a nonzero solution, then the determinant

det

a c b
b a c
c b a

 = 0.
�

Now we can deduce the following result which shows that every non zero
divisor of R is a unit in R.

Theorem 2.9. Every non zero divisor of R is a unit in R (i.e., U(R) is the
set of nonzerodivisors).

Proof. If the equation a c b
b a c
c b a

fg
h

 =

0
0
0


has a unique solution f = g = h = 0, then

det

a c b
b a c
c b a

 6= 0.

So the following matrix equation has a unique solutiona c b
b a c
c b a

fg
h

 =

1
0
0

 .
Hence, a+ bv+ cv2 has an inverse which means that a+ bv+ cv2 is a unit. �

Lemma 2.10. Let C be a skew cyclic code and n be even. If g is the polynomial
with the smallest degree in C and its leading coefficient is not a unit, then the
coefficients of g are zero divisors in R.

Proof. Let g(x) =
∑m
i=0 gix

i and gm a nonunit. Then gm is a zero divisor.
So there exists h ∈ R such that hgm = 0. Since hg ∈ C and deg(hg) < m,
hg = 0, hgi = 0 for each 0 ≤ i < m. Hence gi is a zero divisor for each i and
hg = 0. �
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Note (1): Finding a zero divisor of an element l ∈ R is easy. It is enough
to solve the following matrix equation. Suppose that l = a+ bv + cv2. Thena c b

b a c
c b a

fg
h

 =

0
0
0

 ,
gives l(f + vg + v2h) = 0.

Note (2): The ring R is principal. So depending the irreducibility of
v2 + v + 1, this ring has 4 or 8 ideals. Also, it is easy to see that in each case,
all of the ideals are annihilator ideals.

For example, 〈1 − v〉 = Ann(1 + v + v2). Since an annihilator is a Galois
connection, the equation Ann(Ann(I)) = I holds for all the ideals of R.

Theorem 2.11. Let f be the polynomial with the least degree in C and its

leading coefficient a nonunit. If f(x) =
∑m
i=0 fix

i, then f = fmf̂ and f̂ =∑m
i=0 f̂ix

i and f̂m is a unit.

Proof. Let fm be not unit. So it has a zero divisor like w ∈ R such that
〈fm〉 ⊆ Ann(w). By Note 2, we also know that every ideals of R are annihilator
ideal. So there exists h ∈ R such that 〈fm〉 = Ann(h). Since fih = 0 by

Lemma 2.10, fi ∈ Ann(h). So fi ∈ 〈fm〉. Thus, fi = fmf̂i. This completes the
proof. �

We now demonstrate our main theorem.

Theorem 2.12. Let C be a skew cyclic code with length n. Suppose that the
leading coefficient of the polynomial f , with the least degree in C, is not a unit.
Assume that g ∈ C be the polynomial with least degree from the following set
B :

B = {k ∈ C |The leading coefficient of k is unit}.(2)

If li is a divisor of fm, the leading coefficient of f , then C =
∑
i Snf̂i +Sng

where f̂i is taken to be lif̂ .

Proof. Consider the following set.

Γ = {h ∈ C | deg(f) ≤ deg(h) < deg(g)}.(3)

For each h ∈ C, there exist q, r such that h = qg + r and deg(r) < deg(g).
Since r = h− qg ∈ C, r ∈ Γ. So we have to find a polynomial with degree less

than deg(g). Assume that fm is not a unit where f =
∑k
i=0 fix

i.
If Γ = ∅, then there is nothing to proof. So let w be the polynomial in Γ

with the least degree. Then there are two possibilities:
1) k −m is even. In this case, there are four possibilities. Assume that wk

is the leading coefficient of w.
a) There exist h, t ∈ R such that hwk + lfm = 1. Hence lxm−kf + hw is

a polynomial in C with degree less than deg(g) and unit leading coefficient,
which is impossible.
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b) fm = uwk with u ∈ U(R). If wk = fmh, then w − xm−khf has a degree
less than w. So w − xm−khf = tf for some t ∈ R by definition of w. So
W = (xm−kh+ t)f which is a contradiction.

c) fmh = wk. If f = fm(uxm + · · · ), then uw − hxm−kfmf̂ has degree less

than w. So, uw−hxm−kfmf̂ = rf for some r ∈ S. Hence w = u−1(hxm−k+r)f ,
which is impossible.

d) fm = wkh. Then wk is a divisor of fm. So wk = liu for some i and

u ∈ U(R). Hence uw−xm−kf̂i has degree less than w. Hence uw = xm−kf̂i+rf

for some r ∈ S. Hence w = u−1(xm−k+rui6=j lj)f̂i. Thus w ∈ Rf̂ . So for each

h ∈ C there exist q, r such that h = qg+ r, deg(r) < deg(g). Hence r = hf̂i for

some i and h ∈ S. So C =
∑
i Sf̂i + Sg.

2) k −m is odd. The proof is similar to the case (1). It is enough to check
the cases of the case (1) for θ(gm) instead of gm.

So if h ∈ C and h = qg + r where deg(r) < deg(g), then h = qg +
∑
i lif̂i.

Hence C = Sng +
∑
i Snf̂i. �

Corollary 2.13. Let C be a skew cyclic code over Sn and n even. Then C

is either 〈f̂i〉 or 〈f̂i, g〉, where f are defined as in Theorem 2.12 and g is the
polynomial with the least degree and unit leading coefficient.

Proof. It can be followed by Theorem 2.12 and Theorem 2.7. �

Recall that a set C of n-tuples over a ringR is a quasi cyclic code with index d
and length n, if C is a linear code and whenever (c0,1, . . . , c0,d, c1,1, . . . , c1,d, . . .,
cn−1,1, . . . , cn−1,d) ∈ C, then (cn−1,1, . . . , cn−1,d, c0,1, . . . , c0,d, . . . , cn−2,1, . . .,
cn−2,d) ∈ C.

This is in fact the submodules of
(
R[x]
xn−1

)d
.

We also show a relationship between the skew cyclic codes over R and the
quasi cyclic codes of R. This is important since we show a relationship between
two extensive categories of cyclic codes over R. In this way, we could exploit
the properties of quasi cyclic codes in the skew cyclic code.

Theorem 2.14. Let C be a skew cyclic code with length an even number n.
Then C can be considered as a quasi cyclic code of length n with index 2.

Proof. The proof is similar to the proof of Theorem 3.3 in [11]. Let n = 2N
and assume that c = (c0,0, c0,1, . . . , cN−1,0, cN−1,1) ∈ C. Then by two times
shifting we get (θ2(cN−1,0), θ2(cN−1,1), . . . , θ2(cN−2,0), θ2(cN−2,1)) ∈ C. Since
θ2 = idR, we then have (cN−1,0, cN−1,1, . . . , cN−2,0, cN−2,1) ∈ C. So C is a
quasi cyclic code with index 2. �

Since the number of the quasi cyclic codes are the number of submodule of(
R[x]
〈xN−1〉

)2
, we can compute the number of skew cyclic codes as follows.
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Corollary 2.15. Let n be even. Then the number of distinct skew cyclic codes

of length n over R is equal to the number of R[x]
〈xN−1〉 -submodules of

(
R[x]
〈xN−1〉

)2
,

where N = n
2 .

Theorem 2.16. Let n be odd and C be an skew cyclic code of length n. Then
C is equivalent to a cyclic code of length n over R.

Proof. This proof is similar to the proof of Theorem 3.7 [11]. Since n is odd,
there exists k ∈ Z,−lN such that 2k + nl = 1. If c = (c0, . . . , cn−1) ∈ C, then
(θ2a(cn−2a+1), . . . , θ2a(cn−2a) ∈ C. So (cn−1, c0, . . . , cn−2) ∈ C which means
that C is a cyclic code of length n. �

3. Dual codes and the encoding and decoding description

Let X = (x1, x2, . . . , xn) , Y = (y1, y2, . . . , yn) be two elements of Rn. Then,
the Euclidean and Hermitian inner product of X,Y are as following:

〈X,Y 〉E =
∑
i

xiyi, 〈X,Y 〉H =
∑
i

xiθ(yi).

The Euclidean (respectively Hermitian) dual code C⊥ (C⊥H ) of C is defined

C⊥ = {x ∈ Rn | 〈x, c〉E = 0 for all c ∈ C},

C⊥H = {x ∈ Rn | 〈x, c〉H = 0 for all c ∈ C}.

It can be proved that the dual of a (principal) skew cyclic code is a (principal)
skew cyclic code by the following lemmas and the theorem. The proof is similar
to the one in [5] or [12]. So we do not prove them here.

Lemma 3.1. Let n be even and gh = xn − 1. Then gh = hg.

Lemma 3.2. c is a code word of C = 〈g〉 if and only if ch = 0, where gh =
xn − 1.

Theorem 3.3. Let n be even, g ∈ Center(S) and hg = xn− 1 for some h ∈ S.

Then the dual of the code 〈g(x)〉
〈xn−1〉 is 〈g(x)

⊥〉
〈xn−1〉 where

g(x)⊥ = (hk + θ(hk−1) + · · ·+ θk(h0)xk) + Sn.

Definition. A principal code over R is the ideal 〈g〉
〈xn−1〉 , where n is even and

hg = xn − 1 for some h ∈ S.

Note (3): If g(x) = gn−kx
n−k+gn−k−1x

n−k−1+· · ·+g0, and gn−k ∈ U(R),

then 〈g〉
〈xn−1〉 is a skew cyclic code.

Here we explain the process of encoding and decoding. We describe the
steps to encode and decode the skew cyclic codes.

Encoding of principal codes:
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Let (uk−1, . . . , u0) be the source data. Then (ci)
n−1
i=0 is the encoded data,

where
∑n−1
i=0 cix

i = (
∑n−k
i=0 uix

i)g(x). In matrix equation view, it means that

[u0, . . . , uk−1]



g0 g1 g2 · · · gn−k 0 · · · 0
0 θ(g0) θ(g1) · · · θ(gn−k−1) θ(gn−k) · · · 0

0 0 θ2(g0) · · · θ(gn−k−2) θ(gn−k−1)
... 0

...
...

... · · ·
. . . · · ·

...
...

0 0 0 · · · θk−1(g0) · · · θk−1(gn−k−1) θk−1(gn−k)


k×n

= (v0, . . . , vn).

This matrix is called the generator matrix of the principal skew cyclic codes.

Decoding of principal codes:
Let (un−1, . . . , u0) be received. Then, we should compute the reminder of

division
∑n−1
i=0 uix

i over g(x) (call it r(x)). The decoded word is (
∑
uix

i)−r(x).
So the parity check matrix is as follows.

hk θ(hk−1) θ2(hk−2) · · · θk(h0) 0 · · · 0
0 θ(hk) θ2(hk−1) · · · θk(h1) θk+1(h0) · · · 0

0 0 θ2(hk) · · · θk(h2) θk+1(h1)
... 0

...
...

... · · ·
. . . · · ·

...
...

0 0 0 · · · θk(hk) · · · θn−2(h2) θn−1(h0)


n−k×n

Theorem 3.4. Let n be even. The minimum Hamming distance of C = 〈g〉 is
the number of independent columns of the parity check matrix.

Proof. One can see by Lemma 3.2, that C is a code word, if and only if Ch = 0
in Sn. Let Hi be the ith column of C. Suppose that

∑
jcijHij = 0 for some

j ∈ {1, 2, . . . , n} and some cij ∈ R. We cannot detect the error, if the error

terms e is the polynomial
∑
j cijx

ij . So the minimum Hamming distance is the
cardinality of the maximal subset of dependent columns. �

If we consider the distance of a+ bv + cv2 and f + vg + v2h as√
(a− f)2 + (b− g)2 + (c− h)2, we can define the Lee distance of each two

n-tuples over R.

Corollary 3.5. Let n be even. The minimum Lee distance of C = 〈g〉 is less

than the number of independent columns of the following matrix times (p−1)
√
3

2 .

Proof. Let C have maximum error as the maximum number of some dependent
columns (call it L). According to 3.4, the Lee distance will be the

L∑
j=0

|v̂ij − Cij | ≤
L∑
j=0

(p− 1)
√

3

2
= L

(p− 1)
√

3

2
.

�

Finally we will give some examples of this code as follows.
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Example 3.6. Let C be a skew cyclic code with length 4 over F2 +vF2 +v2F2

and the generator polynomial x2 + (1 + v)x + v. So the generator matrix of
this code is: [

v 1 + v 1 0
0 v2 1 + v2 1

]
2×4

.

This code has the following parity check matrix.[
1 1 + v2 v2 0
0 1 1 + v v

]
2×4

.

One can see easily that the minimum Hamming distance for this code is 3. Since
the number of bits for each symbol in this code is 8, we should compare this
code with a linear code over the ring F8. This means that this is an optimum
code [4, 2, 3] according to [19] or the Singleton bound.

Example 3.7. Let C be a skew cyclic code with length 6 over F2 +vF2 +v2F2

and the generator polynomial x3 + (1 + v2)x+ (1 + v)x+ v2. So the generator
matrix is: v2 1 + v 1 + v2 1 0 0

0 v 1 + v2 1 + v 1 0
0 0 v2 1 + v 1 + v2 1


3×6

.

The minimum Hamming distance of this code is 4 which is equal to an optimum
code [3, 4, 6] over F8 with length 6. Please see [19] or use the Singleton bound.
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