DOI QR코드

DOI QR Code

ON THE LOCATION OF EIGENVALUES OF REAL CONSTANT ROW-SUM MATRICES

  • Hall, Frank J. (Department of Mathematics and Statistics Georgia State University) ;
  • Marsli, Rachid (Preparatory Mathematics Department King Fahd University of Petroleum and Minerals)
  • Received : 2017.11.03
  • Accepted : 2018.02.01
  • Published : 2018.11.30

Abstract

New inclusion sets are obtained for the eigenvalues of real matrices for which the all 1's vector is an eigenvector, i.e., the constant row-sum real matrices. A number of examples are provided. This paper builds upon the work of the authors in [7]. The results of this paper are in terms of $Ger{\check{s}}gorin$ discs of the second type. An application of the main theorem to bounding the algebraic connectivity of connected simple graphs is obtained.

Acknowledgement

Supported by : King Fahd University of Petroleum and Minerals

References

  1. A. Banerjee and R. Mehatari, An eigenvalue localization theorem for stochastic matrices and its application to Randic matrices, Linear Algebra Appl. 505 (2016), 85-96. https://doi.org/10.1016/j.laa.2016.04.023
  2. S. Gerschgorin, Uber die Abgrenzung der Eigenwerte einer Matrix, Izv. Akad. Nauk. USSR Otd. Fiz.-Mat. Nauk 6 (1931), 749-754,
  3. R. A. Horn and C. R. Johnson, Matrix Analysis, second edition, Cambridge University Press, Cambridge, 2013.
  4. C. Li, Q. Liu, and Y. Li, Gersgorin-type and Brauer-type eigenvalue localization sets of stochastic matrices, Linear Multilinear Algebra 63 (2015), no. 11, 2159-2170. https://doi.org/10.1080/03081087.2014.986044
  5. R. Marsli and F. J. Hall, Geometric multiplicities and Gersgorin discs, Amer. Math. Monthly 120 (2013), no. 5, 452-455. https://doi.org/10.4169/amer.math.monthly.120.05.452
  6. R. Marsli and F. J. Hall, Further results on Gersgorin discs, Linear Algebra Appl. 439 (2013), no. 1, 189-195. https://doi.org/10.1016/j.laa.2013.02.021
  7. R. Marsli and F. J. Hall, On the location of eigenvalues of real matrices, Electron. J. Linear Algebra 32 (2017), 357-364. https://doi.org/10.13001/1081-3810.3544
  8. R. Marsli and F. J. Hall, On bounding the eigenvalues of matrices with constant row-sums, to appear in Linear Multilinear Algebra.
  9. Wikipedia, Least absolute deviations, https://en.wikipedia.org/wiki/Least absolute deviation.