Bulletin of the Korean Mathematical Society (대한수학회보)
- Volume 55 Issue 6
- /
- Pages.1691-1701
- /
- 2018
- /
- 1015-8634(pISSN)
- /
- 2234-3016(eISSN)
DOI QR Code
ON THE LOCATION OF EIGENVALUES OF REAL CONSTANT ROW-SUM MATRICES
- Hall, Frank J. (Department of Mathematics and Statistics Georgia State University) ;
- Marsli, Rachid (Preparatory Mathematics Department King Fahd University of Petroleum and Minerals)
- Received : 2017.11.03
- Accepted : 2018.02.01
- Published : 2018.11.30
Abstract
New inclusion sets are obtained for the eigenvalues of real matrices for which the all 1's vector is an eigenvector, i.e., the constant row-sum real matrices. A number of examples are provided. This paper builds upon the work of the authors in [7]. The results of this paper are in terms of
File
Acknowledgement
Supported by : King Fahd University of Petroleum and Minerals
References
- A. Banerjee and R. Mehatari, An eigenvalue localization theorem for stochastic matrices and its application to Randic matrices, Linear Algebra Appl. 505 (2016), 85-96. https://doi.org/10.1016/j.laa.2016.04.023
- S. Gerschgorin, Uber die Abgrenzung der Eigenwerte einer Matrix, Izv. Akad. Nauk. USSR Otd. Fiz.-Mat. Nauk 6 (1931), 749-754,
- R. A. Horn and C. R. Johnson, Matrix Analysis, second edition, Cambridge University Press, Cambridge, 2013.
- C. Li, Q. Liu, and Y. Li, Gersgorin-type and Brauer-type eigenvalue localization sets of stochastic matrices, Linear Multilinear Algebra 63 (2015), no. 11, 2159-2170. https://doi.org/10.1080/03081087.2014.986044
- R. Marsli and F. J. Hall, Geometric multiplicities and Gersgorin discs, Amer. Math. Monthly 120 (2013), no. 5, 452-455. https://doi.org/10.4169/amer.math.monthly.120.05.452
- R. Marsli and F. J. Hall, Further results on Gersgorin discs, Linear Algebra Appl. 439 (2013), no. 1, 189-195. https://doi.org/10.1016/j.laa.2013.02.021
- R. Marsli and F. J. Hall, On the location of eigenvalues of real matrices, Electron. J. Linear Algebra 32 (2017), 357-364. https://doi.org/10.13001/1081-3810.3544
- R. Marsli and F. J. Hall, On bounding the eigenvalues of matrices with constant row-sums, to appear in Linear Multilinear Algebra.
- Wikipedia, Least absolute deviations, https://en.wikipedia.org/wiki/Least absolute deviation.