DOI QR코드

DOI QR Code

FOURTH HANKEL DETERMINANT FOR THE FAMILY OF FUNCTIONS WITH BOUNDED TURNING

  • Arif, Muhammad (Department of Mathematics Abdul Wali Khan University) ;
  • Rani, Lubna (Department of Mathematics Abdul Wali Khan University) ;
  • Raza, Mohsan (Department of Mathematics Government College University) ;
  • Zaprawa, Pawel (Department of Mathematics Faculty of Mechanical Engineering Lublin University of Technology)
  • Received : 2017.11.10
  • Accepted : 2018.08.16
  • Published : 2018.11.30

Abstract

The main aim of this paper is to study the fourth Hankel determinant for the class of functions with bounded turning. We also investigate for 2-fold symmetric and 3-fold symmetric functions.

References

  1. S. Altinkaya and S. Yalcin, Third Hankel determinant for Bazilevic functions, Advances in Math. 5 (2016), no. 2, 91-96.
  2. M. Arif, K. I. Noor, and M. Raza, Hankel determinant problem of a subclass of analytic functions, J. Inequal. Appl. 2012 (2012), 22, 7 pp. https://doi.org/10.1186/1029-242X-2012-22
  3. M. Arif, K. I. Noor, M. Raza, and W. Haq, Some properties of a generalized class of analytic functions related with Janowski functions, Abstr. Appl. Anal. 2012 (2012), Art. ID 279843, 11 pp.
  4. K. O. Babalola, On $H_3(1)$ Hankel determinant for some classes of univalent functions, Inequal. Theory Appl. 6 (2007), 1-7.
  5. D. Bansal, Upper bound of second Hankel determinant for a new class of analytic functions, Appl. Math. Lett. 26 (2013), no. 1, 103-107. https://doi.org/10.1016/j.aml.2012.04.002
  6. D. Bansal, S. Maharana, and J. K. Prajapat, Third order Hankel determinant for certain univalent functions, J. Korean Math. Soc. 52 (2015), no. 6, 1139-1148. https://doi.org/10.4134/JKMS.2015.52.6.1139
  7. C. Caratheodory, Uber den variabilitatsbereich der fourier'schen konstanten von positiven harmonischen funktionen, Rend. Circ. Mat. Palermo. 32 (1911), 193-127. https://doi.org/10.1007/BF03014795
  8. N. E. Cho, B. Kowalczyk, O. S. Kwon, A. Lecko, and J. Sim, Some coefficient inequalities related to the Hankel determinant for strongly starlike functions of order alpha, J. Math. Inequal. 11 (2017), no. 2, 429-439.
  9. W. K. Hayman, On the second Hankel determinant of mean univalent functions, Proc. London Math. Soc. (3) 18 (1968), 77-94.
  10. A. Janteng, S. A. Halim, and M. Darus, Coefficient inequality for a function whose derivative has a positive real part, JIPAM. J. Inequal. Pure Appl. Math. 7 (2006), no. 2, Article 50, 5 pp.
  11. A. Janteng, S. A. Halim, and M. Darus, Hankel determinant for starlike and convex functions, Int. J. Math. Anal. N.S. 1 (2007), no. 13-16, 619-625.
  12. D. V. Krishna and T. Ramreddy, Hankel determinant for starlike and convex functions of order alpha, Tbilisi Math. J. 5 (2012), 65-76. https://doi.org/10.32513/tbilisi/1528768890
  13. D. V. Krishna and T. Ramreddy, Second Hankel determinant for the class of Bazilevic functions, Stud. Univ. Babes-Bolyai Math. 60 (2015), no. 3, 413-420.
  14. S. K. Lee, V. Ravichandran, and S. Supramaniam, Bounds for the second Hankel determinant of certain univalent functions, J. Inequal. Appl. 2013 (2013), 281, 17 pp. https://doi.org/10.1186/1029-242X-2013-281
  15. J.-L. Li and H. M. Srivastava, Some questions and conjectures in the theory of univalent functions, Rocky Mountain J. Math. 28 (1998), no. 3, 1035-1041. https://doi.org/10.1216/rmjm/1181071753
  16. R. J. Libera and E. J. Zlotkiewicz, Early coefficients of the inverse of a regular convex function, Proc. Amer. Math. Soc. 85 (1982), no. 2, 225-230. https://doi.org/10.1090/S0002-9939-1982-0652447-5
  17. M.-S. Liu, J.-F. Xu, and M. Yang, Upper bound of second Hankel determinant for certain subclasses of analytic functions, Abstr. Appl. Anal. 2014 (2014), Art. ID 603180, 10 pp.
  18. A. E. Livingston, The coefficients of multivalent close-to-convex functions, Proc. Amer. Math. Soc. 21 (1969), 545-552. https://doi.org/10.1090/S0002-9939-1969-0243054-0
  19. J. W. Noonan and D. K. Thomas, On the second Hankel determinant of areally mean p-valent functions, Trans. Amer. Math. Soc. 223 (1976), 337-346.
  20. H. Orhan, N. Magesh, and J. Yamini, Bounds for the second Hankel determinant of certain bi-univalent functions, Turkish J. Math. 40 (2016), no. 3, 679-687. https://doi.org/10.3906/mat-1505-3
  21. Ch. Pommerenke, On the coefficients and Hankel determinants of univalent functions, J. London Math. Soc. 41 (1966), 111-122.
  22. Ch. Pommerenke, On the Hankel determinants of univalent functions, Mathematika 14 (1967), 108-112. https://doi.org/10.1112/S002557930000807X
  23. D. Raducanu and P. Zaprawa, Second Hankel determinant for close-to-convex functions, C. R. Math. Acad. Sci. Paris 355 (2017), no. 10, 1063-1071. https://doi.org/10.1016/j.crma.2017.09.006
  24. M. Raza and S. N. Malik, Upper bound of the third Hankel determinant for a class of analytic functions related with lemniscate of Bernoulli, J. Inequal. Appl. 2013 (2013), 412, 8 pp. https://doi.org/10.1186/1029-242X-2013-412
  25. G. Shanmugam, B. A. Stephen, and K. O. Babalola, Third Hankel determinant for ${\alpha}$-starlike functions, Gulf J. Math. 2 (2014), no. 2, 107-113.
  26. R. Parvatham and S. Ponnusamy, New Trends in Geometric Function Theory and Application, World Scientific Publishing Company, Singapore, New Jersey, London and Hong Kong, 1981.
  27. D. Vamshee Krishna, B. Venkateswarlu, and T. RamReddy, Third Hankel determinant for bounded turning functions of order alpha, J. Nigerian Math. Soc. 34 (2015), no. 2, 121-127. https://doi.org/10.1016/j.jnnms.2015.03.001
  28. P. Zaprawa, Third Hankel determinants for subclasses of univalent functions, Mediterr. J. Math. 14 (2017), no. 1, Art. 19, 10 pp.