DOI QR코드

DOI QR Code

INVERSION OF THE CLASSICAL RADON TRANSFORM ON ℤnp

  • Received : 2017.12.07
  • Accepted : 2018.04.24
  • Published : 2018.11.30

Abstract

The Radon transform introduced by J. Radon in 1917 is the integral transform which is widely applicable to tomography. Here we study the discrete version of the Radon transform. More precisely, when $C({\mathbb{Z}}^n_p)$ is the set of complex-valued functions on ${\mathbb{Z}}^n_p$. We completely determine the subset of $C({\mathbb{Z}}^n_p)$ whose elements can be recovered from its Radon transform on ${\mathbb{Z}}^n_p$.

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. M. L. Agranovsky and E. T. Quinto, Injectivity sets for the Radon transform over circles and complete systems of radial functions, J. Funct. Anal. 139 (1996), no. 2, 383-414. https://doi.org/10.1006/jfan.1996.0090
  2. G. Ambartsoumian and P. Kuchment, On the injectivity of the circular Radon transform, Inverse Problems 21 (2005), no. 2, 473-485. https://doi.org/10.1088/0266-5611/21/2/004
  3. C. A. Berenstein, R. Gay, and A. Yger, Inversion of the local Pompeiu transform, J. Analyse Math. 54 (1990), 259-287. https://doi.org/10.1007/BF02796152
  4. S. R. Deans, The Radon Transform and Some of Its Applications, Dover Books on Mathematics Series. Dover Publications, 2007.
  5. M. R. DeDeo and E. Velasquez, The Radon transform on ${\mathbb{Z}}^k_n$, SIAM J. Discrete Math. 18 (2004/05), no. 3, 472-478. https://doi.org/10.1137/S0895480103430764
  6. P. Diaconis and R. L. Graham, The Radon transform on $Z^k_2$, Pacific J. Math. 118 (1985), no. 2, 323-345. https://doi.org/10.2140/pjm.1985.118.323
  7. L. Ehrenpreis, The Universality of the Radon Transform, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2003.
  8. J. A. Fill, The Radon transform on ${\mathbb{Z}}_n$, SIAM J. Discrete Math. 2 (1989), no. 2, 262-283. https://doi.org/10.1137/0402023
  9. P. Frankl and R. L. Graham, The Radon transform on abelian groups, J. Combin. Theory Ser. A 44 (1987), no. 1, 168-171. https://doi.org/10.1016/0097-3165(87)90071-9
  10. S. Helgason, The Radon Transform, second edition, Progress in Mathematics, 5, Birkhauser Boston, Inc., Boston, MA, 1999.
  11. C.-Y. Jung and S. Moon, Exact inversion of the cone transform arising in an application of a Compton camera consisting of line detectors, SIAM J. Imaging Sci. 9 (2016), no. 2, 520-536. https://doi.org/10.1137/15M1033617
  12. V. Maxim, M. Frandes, and R. Prost, Analytical inversion of the Compton transform using the full set of available projections, Inverse Problems 25 (2009), no. 9, 095001, 21 pp. https://doi.org/10.1088/0266-5611/25/9/095001
  13. S. Moon, On the determination of a function from an elliptical Radon transform, J. Math. Anal. Appl. 416 (2014), no. 2, 724-734. https://doi.org/10.1016/j.jmaa.2014.02.058
  14. S. Moon, On the determination of a function from its conical Radon transform with a fixed central axis, SIAM J. Math. Anal. 48 (2016), no. 3, 1833-1847. https://doi.org/10.1137/15M1021945
  15. F. Natterer, The Mathematics of Computerized Tomography, reprint of the 1986 original, Classics in Applied Mathematics, 32, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2001.
  16. V. Palamodov, Reconstructive Integral Geometry, Monographs in Mathematics, 98, Birkhauser Verlag, Basel, 2004.
  17. B. Rubin, Introduction to Radon Transforms, Encyclopedia of Mathematics and its Applications, 160, Cambridge University Press, New York, 2015.
  18. J. Wilson and N. Patwari, Radio tomographic imaging with wireless networks, IEEE Transactions on Mobile Computing 9 (2010), no. 5, 621-632. https://doi.org/10.1109/TMC.2009.174
  19. L. Zalcman, Offbeat integral geometry, Amer. Math. Monthly 87 (1980), no. 3, 161-175. https://doi.org/10.1080/00029890.1980.11994985