
Bull. Korean Math. Soc. 55 (2018), No. 6, pp. 1783–1789

https://doi.org/10.4134/BKMS.b171072

pISSN: 1015-8634 / eISSN: 2234-3016

LOGHARMONIC MAPPINGS WITH TYPICALLY REAL

ANALYTIC COMPONENTS

Zayid AbdulHadi, Najla M. Alarifi, and Rosihan M. Ali

Abstract. This paper treats the class of normalized logharmonic map-

pings f(z) = zh(z)g(z) in the unit disk satisfying ϕ(z) = zh(z)g(z) is
analytically typically real. Every such mapping f admits an integral rep-

resentation in terms of its second dilatation function and a function of

positive real part with real coefficients. The radius of starlikeness and an
upper estimate for arclength are obtained. Additionally, it is shown that

f maps the unit disk into a domain symmetric with respect to the real

axis when its second dilatation has real coefficients.

1. Introduction

Let H(U) be the linear space of analytic functions defined in the unit disk
U = {z : |z| < 1} of the complex plane C. Let B denote the set of self-maps a ∈
H(U), and B0 its subclass consisting of a ∈ B(U) with a(0) = 0. A logharmonic
mapping in U is a solution of the nonlinear elliptic partial differential equation

(1.1)

(
fz(z)

f(z)

)
= a(z)

fz(z)

f(z)
,

where the second dilatation function a lies in B. Thus the Jacobian

Jf = |fz|2 (1− |a|2)

is positive, and all non-constant logharmonic mappings are sense-preserving
and open in U .

If f is a non-constant logharmonic mapping which vanishes only at z = 0,
then [4] shows that f admits the representation

(1.2) f(z) = zm|z|2βmh(z)g(z),
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where m is a positive integer, Re β > −1/2, and h, g ∈ H(U) satisfy g(0) = 1
and h(0) 6= 0. The exponent β in (1.2) depends only on a(0) and is given by

β = a(0)
1 + a(0)

1− |a(0)|2
.

Note that f(0) 6= 0 if and only if m = 0, and that a univalent logharmonic
mapping vanishes at the origin if and only if m = 1, that is, f has the form

f(z) = z|z|2βh(z)g(z),

where 0 /∈ (hg)(U). This class has been studied extensively over recent years in
[1–8].

As further evidence of its importance, note that F (ζ) = log f(eζ) are univa-
lent harmonic mappings of the half-plane {ζ : Re ζ < 0}. Studies on univalent
harmonic mappings can be found in [9–13, 15–17], which are closely related to
the theory of minimal surfaces (see [19,20]).

An analytic function ϕ in U is typically real if ϕ(z) is real whenever z is real
and nonreal elsewhere. Similarly, a logharmonic mapping f in U is typically
real if f(z) is real whenever z is real and nonreal elsewhere. Investigations into
typically real logharmonic mappings was initiated by Abdulhadi in [2].

Denote by HG the class of analytic functions ϕ(z) = zh(z)g(z), where h
and g in H(U) are normalized by h(0) = 1 = g(0), and 0 /∈ (hg)(U). This

paper treats the class TRa of logharmonic mappings f(z) = zh(z)g(z) satisfying
ϕ(z) = zh(z)g(z) ∈ HG is analytically typically real in U .

In Section 2, every mapping f ∈ TRa is shown to admit an integral repre-
sentation in terms of its second dilatation function and a function of positive
real part with real coefficients. The radius of starlikeness is also obtained for
the class TRa, as well as an upper estimate for its arclength.

For an analytic univalent function f(z) = z +
∑∞
n=2 anz

n, it is known [2]
that f is typically real if and only if the image f(U) is a domain symmetric
with respect to the real axis. However, this characterization no longer holds for
logharmonic maps, that is, it is not true that a univalent logharmonic mapping
F (z) = zh(z)g(z) ∈ TRa if and only if the image F (U) is a symmetric domain
with respect to the real axis.

As an illustration, Figure 1 shows the mapping F (z) = z(1+iz/3)(1+iz/3) ∈
TRa but F (U) is not a symmetric domain with respect to the real axis.

On the other hand, Figure 2 shows the mapping

F (z) = z exp {Re (4z/(1− z))} (1− z)/(1− z)

which does not belong to the class TRa, but yet maps U onto a symmetric
domain with respect to the real axis F (U).

In Section 3 we explore conditions on the dilatation a that would ensure
a logharmonic mapping f(z) = zh(z)g(z) ∈ TRa necessarily satisfies f(U) is
symmetric with respect to the real axis. Sufficient conditions for univalent
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Figure 1. Graph of F (z) = z(1 + iz
3 )(1 + iz

3 ).
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Figure 2. Graph of F (z) = z 1−z
1−z exp

{
Re
(

4z
1−z

)}
.

logharmonic mappings to belong to the class TRa in some subdisk of U are also
determined.

2. An integral representation and radius of starlikeness

Let us denote by PR the class of normalized analytic functions with positive
real part and with real coefficients in U. The following result gives a represen-
tation of f ∈ TRa in terms of the dilatation a and p ∈ PR.

Theorem 1. Let f = zh(z)g(z) belongs to TRa with respect to a ∈ B0. Then

f(z) =
zp(z)

1− z2
exp

(
−2i Im

∫ z

0

a(s)

1 + a(s)

(
1 + s2

s(1− s2)
+
p′(s)

p(s)

)
ds

)
for some p ∈ PR.
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Proof. Let ϕ(z) = zh(z)g(z), and

f(z) = ϕ(z)
g(z)

g(z)
.(2.1)

It follows from (1.1) that

g′(z)

g(z)
=

a(z)

1 + a(z)

ϕ′(z)

ϕ(z)
,

which readily yields

(2.2) g(z) = exp

∫ z

0

a(s)

1 + a(s)

ϕ′(s)

ϕ(s)
ds.

Substituting (2.2) into (2.1) yields

f(z) = ϕ(z) exp

(
−2i Im

∫ z

0

a(s)

1 + a(s)

ϕ′(s)

ϕ(s)
ds

)
.

It is known [21] that every typically real analytic function ϕ has the form
(1− z2)ϕ(z) = zp(z) for some p ∈ PR, which yields the desired result. �

In the next result, we obtain an estimate on the radius of starlikeness for
the class TRa.

Theorem 2. Let f(z) = zh(z)g(z) ∈ TRa with respect to a ∈ B0. Then f maps

the disk |z| < 3− 2
√

2 onto a starlike domain.

Proof. The function f maps the circle |z| = r onto a starlike curve provided

∂

∂θ
arg f(reiθ) = Im

(
∂

∂θ
log f(reiθ)

)
= Re

zfz − zfz
f

> 0.

With ϕ(z) = zh(z)g(z), a short computation gives

Re
zfz − zfz

f
= Re

(
1− a(z)

1 + a(z)

zϕ′(z)

ϕ(z)

)
for some a ∈ B0.

Next let

q(z) =
1− a(z)

1 + a(z)

zϕ′(z)

ϕ(z)
,

and σ(z) = ρ0z. Kirwan [18] has shown that the radius of starlikeness for typi-

cally real analytic functions ϕ is ρ0 =
√

2−1. Thus Re {ζϕ′(ζ)/ϕ(ζ)|(σ(z))} > 0,

and so q(σ(z)) is subordinated to ((1 + z)/(1− z))2 in U .
Writing p(z) = (1 + z)/(1− z), it follows from [14, p. 84] that∣∣∣∣p(z)− 1 + r2

1− r2

∣∣∣∣ ≤ 2r

1− r2
.

Thus | arg(p(z))| < π/4 provided |z| < ρ0, where ρ0 is a smallest positive root

of the equation r2 − 2
√

2r + 1 = 0. The function f(z) = zh(z)g(z) is thus

starlike in the disk |z| < ρ20 = 3− 2
√

2. �
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The next result gives an upper estimate for arclength of all mappings f in
the class TRa.

Theorem 3. Let f(z) = zh(z)g(z) ∈ TRa with respect to a ∈ B0. Then for
|z| = r, an upper bound for arclength L(r) is given by

L(r) ≤ 2πr(1 + r)2

(1− r)4
.

Proof. Let Cr denote the image of the circle |z| = r < 1 under the mapping
w = f(z). Then

L(r) =

∫
Cr

|df | =

∫ 2π

0

|zfz − zfz|dθ

≤M(r)

∫ 2π

0

∣∣∣∣zfz − zfzf

∣∣∣∣ dθ,
where |f(z)| ≤ M(r), 0 < r < 1. Let ϕ(z) = zh(z)g(z). Since ϕ is a typically
real analytic function, and |f | = |ϕ|, then |zϕ′(z)/ϕ(z)| ≤ (1 + r)/(1− r) and
M(r) ≤ r/(1− r)2.

Further ∣∣∣∣zfz − zfzf

∣∣∣∣ =

∣∣∣∣zϕ′(z)ϕ(z)
− 2Re

(
a(z)

1 + a(z)

zϕ′(z)

ϕ(z)

)∣∣∣∣
≤ 1 + r

1− r
+ 2

r

1− r
1 + r

1− r
,

and thus,

L(r) ≤ 2πr(1 + r)2

(1− r)4
. �

3. Logharmonic mappings in the class TRa

The following result is readily established, and thus the proof is omitted.
It describes the geometry of a logharmonic function in the class TRa when its
second dilatation has real coefficients.

Theorem 4. Let f(z) = zh(z)g(z) ∈ TRa be a sense-preserving logharmonic
mapping in U . If the second dilatation function a has real coefficients, that is,
a(z) = a(z), then f(U) is symmetric with respect to the real axis.

The final result derives sufficient conditions for f ∈ TRa in some subdisk of
U .

Theorem 5. Let f(z) = zh(z)g(z) be a univalent sense-preserving logharmonic
mapping in U normalized by h(0) = 1 = g(0), where its second dilatation
function a has real coefficients. Further, suppose f(U) = Ω, Ω 6= C, is a
strictly starlike Jordan domain. If f(U) is a symmetric domain with respect to
the real axis, and |a(z)| ≤ k < 1 in U, then ϕ(z) = zh(z)g(z) is typically real

in the disk |z| <
√

2− 1.
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Proof. The domain Ω is a strictly starlike Jordan domain provided each radial
ray from 0 intersects the boundary ∂Ω of Ω = f(U) at exactly one point of C.
Further, since |a(z)| ≤ k < 1 in U, it follows from [7, Lemma 2.4] that there is
only one univalent logharmonic mapping from U onto Ω which is a solution of
(1.1) normalized by f(0) = 0 and h(0) = 1 = g(0).

Since a has real coefficients, then a(z) = a(z). On the other hand, the

mapping F (z) = f(z) is also univalent and logharmonic in U, where F (U) =
f(U).

If F (z) = zH(z)G(z) = zh(z)g(z) with H(z) = h(z) and G(z) = g(z), then
F satisfies the normalization F (0) = 0, H(0) = 1 = G(0), and F is a solution
of

Fz(z)

F (z)
= a(z)

Fz(z)

F (z)
= a(z)

Fz(z)

F (z)
.

Thus, F is a logharmonic mapping with respect to the same a, and con-
sequently, f(z) ≡ F (z) in U. This implies f has real coefficients, and so
ψ(z) = zh(z)/g(z) = f(z)/|g(z)|2 has real coefficients.

Direct calculations yield

g′(z)

g(z)
=

a(z)

1− a(z)

ψ′(z)

ψ(z)
,

which upon integrating leads to

g(z) = exp

∫ z

0

a(t)

1− a(t)

ψ′(t)

ψ(t)
dt.

Then g, and so does h, have real coefficients, and thus ϕ(z) = zh(z)g(z) has real
coefficients. Furthermore, [5, Theorem 3.1] shows that ϕ is starlike univalent

in the disk |z| < ρ, where ρ =
√

2 − 1. Thus ϕ is typically real in the disk

|z| <
√

2− 1. �
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