DOI QR코드

DOI QR Code

OME PROPERTIES OF THE BERNOULLI NUMBERS OF THE SECOND KIND AND THEIR GENERATING FUNCTION

  • Qi, Feng (Institute of Mathematics Henan Polytechnic University) ;
  • Zhao, Jiao-Lian (Department of Mathematics and Informatics Weinan Normal University)
  • Received : 2018.01.10
  • Accepted : 2018.04.13
  • Published : 2018.11.30

Abstract

In the paper, the authors find a common solution to three series of differential equations related to the generating function of the Bernoulli numbers of the second kind and present a recurrence relation, an explicit formula in terms of the Stirling numbers of the first kind, and a determinantal expression for the Bernoulli numbers of the second kind.

References

  1. N. Bourbaki, Functions of a Real Variable, translated from the 1976 French original by Philip Spain, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2004.
  2. N. D. Cahill, J. R. D'Errico, D. A. Narayan, and J. Y. Narayan, Fibonacci determinants, College Math. J. 3 (2002), 221-225.
  3. L. Comtet, Advanced Combinatorics, revised and enlarged edition, D. Reidel Publishing Co., Dordrecht, 1974.
  4. B.-N. Guo and F. Qi, Some identities and an explicit formula for Bernoulli and Stirling numbers, J. Comput. Appl. Math. 255 (2014), 568-579. https://doi.org/10.1016/j.cam.2013.06.020
  5. S. Hu and M.-S. Kim, Two closed forms for the Apostol-Bernoulli polynomials, Ramanujan J. 46 (2018), no. 1, 103-117. https://doi.org/10.1007/s11139-017-9907-4
  6. G. Nemes, An asymptotic expansion for the Bernoulli numbers of the second kind, J. Integer Seq. 14 (2011), no. 4, Article 11.4.8, 6 pp.
  7. F. Qi, An integral representation, complete monotonicity, and inequalities of Cauchy numbers of the second kind, J. Number Theory 144 (2014), 244-255. https://doi.org/10.1016/j.jnt.2014.05.009
  8. F. Qi, Explicit formulas for computing Bernoulli numbers of the second kind and Stirling numbers of the first kind, Filomat 28 (2014), no. 2, 319-327. https://doi.org/10.2298/FIL1402319O
  9. F. Qi, Derivatives of tangent function and tangent numbers, Appl. Math. Comput. 268 (2015), 844-858.
  10. F. Qi, A new formula for the Bernoulli numbers of the second kind in terms of the Stirling numbers of the first kind, Publ. Inst. Math. (Beograd) (N.S.) 100(114) (2016), 243-249. https://doi.org/10.2298/PIM150501028Q
  11. F. Qi, Diagonal recurrence relations for the Stirling numbers of the first kind, Contrib. Discrete Math. 11 (2016), no. 1, 22-30.
  12. F. Qi, Diagonal recurrence relations, inequalities, and monotonicity related to the Stirling numbers of the second kind, Math. Inequal. Appl. 19 (2016), no. 1, 313-323.
  13. F. Qi, V. Cernanova, and Y. S. Semenov, On tridiagonal determinants and the Cauchy product of central Delannoy numbers, ResearchGate Working Paper (2016), available online at https://doi.org/10.13140/RG.2.1.3772.6967.
  14. F. Qi and R. J. Chapman, Two closed forms for the Bernoulli polynomials, J. Number Theory 159 (2016), 89-100. https://doi.org/10.1016/j.jnt.2015.07.021
  15. F. Qi and B.-N. Guo, Explicit formulas for derangement numbers and their generating function, J. Nonlinear Funct. Anal. 2016 (2016), Article ID 45, 10 pages.
  16. F. Qi and B.-N. Guo, Some determinantal expressions and recurrence relations of the Bernoulli polynomials, Mathematics 4 (2016), no. 4, Article 65, 11 pages.
  17. F. Qi and B.-N. Guo, A determinantal expression and a recurrence relation for the Euler polynomials, Adv. Appl. Math. Sci. 16 (2017), no. 9, 297-309.
  18. F. Qi and B.-N. Guo, Explicit and recursive formulas, integral representations, and properties of the large Schroder numbers, Kragujevac J. Math. 41 (2017), no. 1, 121-141. https://doi.org/10.5937/KgJMath1701121F
  19. F. Qi and B.-N. Guo, Explicit formulas and recurrence relations for higher order Eulerian polynomials, Indag. Math. (N.S.) 28 (2017), no. 4, 884-891. https://doi.org/10.1016/j.indag.2017.06.010
  20. F. Qi and B.-N. Guo, Expressing the generalized Fibonacci polynomials in terms of a tridiagonal determinant, Matematiche (Catania) 72 (2017), no. 1, 167-175.
  21. F. Qi and B.-N. Guo, Two nice determinantal expressions and a recurrence relation for the Apostol-Bernoulli polynomials, J. Indones. Math. Soc. 23 (2017), no. 1, 81-87.
  22. F. Qi and B.-N. Guo, A diagonal recurrence relation for the Stirling numbers of the first kind, Appl. Anal. Discrete Math. 12 (2018), no. 1, 153-165. https://doi.org/10.2298/AADM170405004Q
  23. F. Qi, D. Lim, and B.-N. Guo, Explicit formulas and identities for the Bell polynomials and a sequence of polynomials applied to differential equations, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM (2018), in press; Available online at https://doi.org/10.1007/s13398-017-0427-2. https://doi.org/10.1007/s13398-017-0427-2
  24. F. Qi, M. Mahmoud, X.-T. Shi, and F.-F. Liu, Some properties of the Catalan-Qi function related to the Catalan numbers, SpringerPlus 5 (2016), 1126, 20 pages; Available online at https://doi.org/10.1186/s40064-016-2793-1. https://doi.org/10.1186/s40064-016-2793-1
  25. F. Qi, D.-W. Niu, and B.-N. Guo, Some identities for a sequence of unnamed polynomials connected with the Bell polynomials, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM 112 (2018), in press; Available online at https://doi.org/10.1007/s13398-018-0494-z.
  26. F. Qi, X.-T. Shi, and B.-N. Guo, Two explicit formulas of the Schroder numbers, Integers 16 (2016), Paper No. A23, 15 pp.
  27. F. Qi, X.-T. Shi, F.-F. Liu, and D. V. Kruchinin, Several formulas for special values of the Bell polynomials of the second kind and applications, J. Appl. Anal. Comput. 7 (2017), no. 3, 857-871.
  28. F. Qi, J.-L. Wang, and B.-N. Guo, A recovery of two determinantal representations for derangement numbers, Cogent Math. 3 (2016), Art. ID 1232878, 7 pp.
  29. F. Qi, J.-L. Wang, and B.-N. Guo, A representation for derangement numbers in terms of a tridiagonal determinant, Kragujevac J. Math. 42 (2018), no. 1, 7-14. https://doi.org/10.5937/KgJMath1801007F
  30. F. Qi, J.-L. Wang, and B.-N. Guo, Notes on a family of inhomogeneous linear ordinary differential equations, Adv. Appl. Math. Sci. 17 (2018), no. 4, 361-368.
  31. F. Qi, J.-L. Wang, and B.-N. Guo, Simplifying differential equations concerning degenerate Bernoulli and Euler numbers, Trans. A. Razmadze Math. Inst. 172 (2018), no. 1, 90-94. https://doi.org/10.1016/j.trmi.2017.08.001
  32. F. Qi and X.-J. Zhang, An integral representation, some inequalities, and complete monotonicity of the Bernoulli numbers of the second kind, Bull. Korean Math. Soc. 52 (2015), no. 3, 987-998. https://doi.org/10.4134/BKMS.2015.52.3.987
  33. F. Qi and J.-L. Zhao, Some properties of the Bernoulli numbers of the second kind and their generating function, ResearchGate Working Paper (2017), available online at https://doi.org/10.13140/RG.2.2.13058.27848.
  34. F. Qi, J.-L. Zhao, and B.-N. Guo, Closed forms for derangement numbers in terms of the Hessenberg determinants, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 112 (2018), in press; Available online at https://doi.org/10.1007/s13398-017-0401-z. https://doi.org/10.1007/s13398-017-0401-z
  35. C.-F. Wei and F. Qi, Several closed expressions for the Euler numbers, J. Inequal. Appl. 2015 (2015), 219, 8 pp. https://doi.org/10.1186/s13660-015-0738-9
  36. J.-L. Zhao, J.-L. Wang, and F. Qi, Derivative polynomials of a function related to the Apostol-Euler and Frobenius-Euler numbers, J. Nonlinear Sci. Appl. 10 (2017), no. 4, 1345-1349. https://doi.org/10.22436/jnsa.010.04.06