DOI QR코드

DOI QR Code

Determination of Chaboche Cyclic Combined Hardening Model for Cracked Component Analysis Using Tensile and Cyclic C(T) Test Data

표준 인장시험과 반복하중 C(T) 시험을 이용한 균열해석에서의 Chaboche 복합경화 모델 결정법

  • 황진하 (고려대학교 기계공학부) ;
  • 김훈태 (고려대학교 기계공학부) ;
  • 류호완 (고려대학교 기계공학부) ;
  • 김윤재 (고려대학교 기계공학부) ;
  • 김진원 (조선대학교 원자력공학과) ;
  • 권형도 (한국수력원자력(주) 중앙연구원)
  • Received : 2019.10.26
  • Accepted : 2019.12.13
  • Published : 2019.12.30

Abstract

Cracked component analysis is needed for structural integrity analysis under seismic loading. Under large amplitude cyclic loading conditions, the change in material properties can be complex, depending on the magnitude of plastic strain. Therefore the cracked component analysis under cyclic loading should consider appropriate cyclic hardening model. This study introduces a procedure for determining an appropriate cyclic hardening model for cracked component analysis. The test material was nuclear-grade TP316 stainless steel. The material cyclic hardening was simulated using the Chaboche combined hardening model. The kinematic hardening model was determined from standard tensile test to cover the high and wide strain range. The isotropic hardening model was determined by simulating C(T) test under cyclic loading using ABAQUS debonding analysis. The suitability of the material hardening model was verified by comparing load-displacement curves of cyclic C(T) tests under different load ratios.

Acknowledgement

Grant : 균열을 고려한 상세 기기 내진 평가 절차 개발

Supported by : 한국수력원자력(주)

References

  1. Nam, H. S., Lee, J. M., Youn, G. G., Kim, Y. J. and Kim, J. W., 2018, "Simulation of ductile fracture toughness test under monotonic and reverse cyclic loading," Int. J. Mech. Sci., Vol. 135, pp. 609-620. doi: https://doi.org/10.1016/j.ijmecsci. 2017.11.037 https://doi.org/10.1016/j.ijmecsci.2017.11.037
  2. Nam, H. S., Lee, J. M., Kim, Y. J. and Kim, J. W., 2018, "Numerical ductile fracture prediction of circumferential through-wall cracked pipes under very low cycle fatigue loading conditions," Eng. Fract. Mech., Vol. 194, pp. 175-189. doi: https://doi.org/10.1016/j.engfracmech.2018.02.025 https://doi.org/10.1016/j.engfracmech.2018.02.025
  3. Nam, H. S., Youn, G. G., Lee, J. M., Kim, H. T. and Kim, Y. J., 2019, "Numerical simulation and experimental validation of ductile tearing in A106 Gr. B piping system under simulated seismic loading conditions," P. I. Mehc. Eng. L-J Mat., Vol. 233, No. 1, pp. 28-38. doi:https://doi.org/10.1177/1464420718778706 https://doi.org/10.1177/1464420718778706
  4. Youn, G. G., Nam, H. S., Kim, Y. J. and Kim, J. W., 2019, "Numerical prediction of thermal aging and cyclic loading effects on fracture toughness of cast stainless steel CF8A: Experiment and numerical study," Int. J. Mech. Sci., Vol. 163, pp. 105120. doi:https://doi.org/10.1016/j.ijmecsci.2019.105120 https://doi.org/10.1016/j.ijmecsci.2019.105120
  5. Kweon, H. D., Heo, E. J., Lee, J. M. and Kim, J. W., 2018, "Strain-based damage evaluation of specimens under large seismic loads," Trans. of the KPVP, Vol. 14, No.2, pp. 24-31. doi:https://doi.org/10.20466/KPVP.2018.14.2.024 https://doi.org/10.20466/KPVP.2018.14.2.024
  6. Seok, C. S. and Murty, K. L., 2000, "A study on the decrease of fracture resistance curve under reversed cyclic loading," Int. J. Press. Ves. Pip., Vol. 77, No. 6, pp. 303-311. doi:https://doi.org/10.1016/S0308-0161(00)00018-1 https://doi.org/10.1016/S0308-0161(00)00018-1
  7. Roy, H., Sivaprasad, S., Tarafder, S. and Ray, K. K., 2009, "Monotonic vis-a-vis cyclic fracture behaviour of AISI 304LN stainless steel," Eng. Fract. Mech., Vol. 76, No. 12, pp. 1252-1263. doi:https://doi.org/10.1016/S0308-0161(00)00018-1
  8. Nam, H. S., Kim, J. S., Ryu, H. W., Kim, Y. J. and Kim, J. W., 2016, "Numerical ductile tearing simulation of circumferential cracked pipe tests under dynamic loading conditions," Nucl. Eng. Technol., Vol. 48, No. 5, pp. 1252-1263. doi:https://doi.org/10.1016/j.net.2016.03.012 https://doi.org/10.1016/j.net.2016.03.012
  9. Prager, W., 1956, "A new method of analyzing stresses and strains in work hardening plastic solids," J. Appl. Mech-T ASME., Vol. 23, pp. 493-496.
  10. Armstrong, P. J. and Frederick, C. O., 1966, "A mathematical representation of the multiaxial Bauschinger effect," CEGB Report, Vol. 731, No. RD/B/NU.
  11. Ohno, N. and Wang, J. D., 1993, "Kinematic hardening rules with critical state of dynamic recovery, part I: formulations and basic features for ratcheting behavior," Int. J. Plasticity., Vol. 9, pp. 375-390. doi:https://doi.org/10.1016/0749-6419(93)90043-P https://doi.org/10.1016/0749-6419(93)90042-O
  12. Chaboche, J. L., Dang-Van, K. and Cordier, G., 1979, "Modelization of the strain memory effect on the cyclic hardening of 316 stainless steel," the 5th International conferenceon SMiRT: Div. L, Germany, FR, August 9-21, INKA-CONF-79-321-526.
  13. Chaboche, J. L., 1986, "Time-independent constitutive theories for cyclic plasticity," Int. J. Plasticity., Vol. 2, pp. 149-188. doi:https://doi.org/10.1016/0749-6419(86)90010-0 https://doi.org/10.1016/0749-6419(86)90010-0
  14. Chaboche, J. L., 1991, "On some modifications of kinematic hardening to improve the description of ratcheting effects," Int. J. Plasticity., Vol. 7, pp. 661-667. doi:https://doi.org/10.1016/0749-6419(91)90050-9 https://doi.org/10.1016/0749-6419(91)90050-9
  15. Chaboche, J. L., 1994, "Modeling of ratcheting: evaluation of various approaches," Eur. J. Mech A-Solid., Vol. 13, pp. 501-518.
  16. Bari, S. and Hassan, T., 2000, "Anatomy of coupled constitutive models for ratcheting simulation," Int. J. plasticity., Vol. 16, pp. 381-409. doi:https://doi.org/10.1016/S0749-6419(99)00059-5 https://doi.org/10.1016/S0749-6419(99)00059-5
  17. Bari, S., Hassan, T., 2002, "An advancement in cyclic plasticity modeling for multiaxial ratcheting simulation," Int. J. plasticity., Vol. 18, pp. 873-894. doi:https://doi.org/10.1016/S0749-6419(01)00012-2 https://doi.org/10.1016/S0749-6419(01)00012-2
  18. Jeon, D. S., Kang, J. Y., Huh, N. S., Kim, J. S. and Kim, Y. J., 2017, "Effect of hardening models on cyclic deformation behavior of tensile specimen and nuclear piping system," Trans. of the KPVP, Vol. 13, No.2, pp. 67-74. doi:https://doi.org/10.20466/KPVP.2017.13.2.067 https://doi.org/10.20466/KPVP.2017.13.2.067
  19. Kim, J. W. and Choi, M. R., 2015, "Effect of loading rate on the deformation behavior of SA508 Gr. 1a low-alloy steel and TP316 stainless steel pipe materials at RT and $316^{\circ}C$,"Trans. of the KSME A., Vol. 39, pp. 383-390. doi:https://doi.org/10.3795/KSME-A.2015.39.4.383 https://doi.org/10.3795/KSME-A.2015.39.4.383
  20. ASTM E1820, 2009, "Standard test method for tension testing of metallic materials," In: annual book of ASTM standard, American society for testing and materials, Philadelphia, USA.
  21. Kim, J. W. and Choi, M. R., 2016, "Effect of loading rate on the fracture behavior of nuclear piping materials under cyclic loading conditions," Nucl. Eng. Technol., Vol. 48, No. 6, pp. 1376-1386. doi:https://doi.org/10.1016/j.net.2016.06.006 https://doi.org/10.1016/j.net.2016.06.006
  22. ABAQUS. version 2018, 2018, User's manual, Inc. and Dassault systems.
  23. Bannantine, J. A., Comper, J. J. and Hankrock, J. L., 1990, "Fundamentals of metal fatigue analysis," Prentice hall.
  24. Ryu, H. W., 2019, Determination of simplified hardening parameters to simulate deformation behavior of cracked components under cyclic loading condition, Korea university of mechanical engineering, Ph.D Thesis.
  25. USNRC, 2014, "Effect of LWR coolant environments on fatigue life of reactor materials," U.S. Nuclear Regulatory Commission, Washington, DC, NUREG/CR-6909.
  26. USNRC, 1999, "Effect of LWR coolant environments on fatigue design curves of austenitic stainless steels," U.S. Nuclear Regulatory Commission, Washington, DC, NUREG/CR-5704.