DOI QR코드

DOI QR Code

Classification of Weather Patterns in the East Asia Region using the K-means Clustering Analysis

K-평균 군집분석을 이용한 동아시아 지역 날씨유형 분류

  • Cho, Young-Jun (Observation and Forecast Research Division, National Institute of Meteorological Sciences) ;
  • Lee, Hyeon-Cheol (Observation and Forecast Research Division, National Institute of Meteorological Sciences) ;
  • Lim, Byunghwan (Observation and Forecast Research Division, National Institute of Meteorological Sciences) ;
  • Kim, Seung-Bum (Observation and Forecast Research Division, National Institute of Meteorological Sciences)
  • 조영준 (기상청 국립기상과학원 관측예보연구과) ;
  • 이현철 (기상청 국립기상과학원 관측예보연구과) ;
  • 임병환 (기상청 국립기상과학원 관측예보연구과) ;
  • 김승범 (기상청 국립기상과학원 관측예보연구과)
  • Received : 2019.07.02
  • Accepted : 2019.09.26
  • Published : 2019.11.30

Abstract

Medium-range forecast is highly dependent on ensemble forecast data. However, operational weather forecasters have not enough time to digest all of detailed features revealed in ensemble forecast data. To utilize the ensemble data effectively in medium-range forecasting, representative weather patterns in East Asia in this study are defined. The k-means clustering analysis is applied for the objectivity of weather patterns. Input data used daily Mean Sea Level Pressure (MSLP) anomaly of the ECMWF ReAnalysis-Interim (ERA-Interim) during 1981~2010 (30 years) provided by the European Centre for Medium-Range Weather Forecasts (ECMWF). Using the Explained Variance (EV), the optimal study area is defined by 20~60°N, 100~150°E. The number of clusters defined by Explained Cluster Variance (ECV) is thirty (k = 30). 30 representative weather patterns with their frequencies are summarized. Weather pattern #1 occurred all seasons, but it was about 56% in summer (June~September). The relatively rare occurrence of weather pattern (#30) occurred mainly in winter. Additionally, we investigate the relationship between weather patterns and extreme weather events such as heat wave, cold wave, and heavy rainfall as well as snowfall. The weather patterns associated with heavy rainfall exceeding 110 mm day-1 were #1, #4, and #9 with days (%) of more than 10%. Heavy snowfall events exceeding 24 cm day-1 mainly occurred in weather pattern #28 (4%) and #29 (6%). High and low temperature events (> 34℃ and < -14℃) were associated with weather pattern #1~4 (14~18%) and #28~29 (27~29%), respectively. These results suggest that the classification of various weather patterns will be used as a reference for grouping all ensemble forecast data, which will be useful for the scenario-based medium-range ensemble forecast in the future.

Acknowledgement

Grant : 위험기상에 대한 분석.예보의 융합기술 고도화

Supported by : 국립기상과학원

References

  1. Beck, C., and A. Philipp, 2010: Evaluation and comparison of circulation type classifications for the European domain. Phys. Chem. Earth, 35, 374-387, doi:10.1016/j.pce.2010.01.001. https://doi.org/10.1016/j.pce.2010.01.001
  2. Beck, C., A. Philipp, and F. Streicher, 2016: The effect of domain size on the relationship between circulation type classifications and surface climate. Int. J. Climatol., 36, 2692-2709, doi:10.1002/joc.3688. https://doi.org/10.1002/joc.3688
  3. Casola, J. H., and J. M. Wallace, 2007: Identifying weather regimes in the wintertime 500-hPa geopotential height field for the Pacific-North American sector using a limited-contour clustering technique. J. Appl. Meteor. Climatol., 46, 1619-1630, doi:10.1175/jam2564.1. https://doi.org/10.1175/JAM2564.1
  4. Choi, Y.-J., Y.-R. Jung, H.-J. Kim, K.-R, Kim, S.-Y. Lee, and H.-R. Lee, 2009: A study on regionalization by K-means method and time series pattern of precipitation areas in South Korea. J. Korean Data Anal. Soc., 11, 2761-2772 (in Korean with English abstract).
  5. Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc., 137, 553-597, doi:10.1002/qj.828. https://doi.org/10.1002/qj.828
  6. Esteban, P., P. D. Jones, J. Martín-Vide, and M. Mases, 2005: Atmospheric circulation patterns related to heavy snowfall days in Andorra, Pyrenees. Int. J. Climatol., 25, 319-329, doi:10.1002/joc.1103. https://doi.org/10.1002/joc.1103
  7. Everitt, B., 1993: Cluster analysis. 3rd edit., Halsted Press, 170 pp.
  8. Fereday, D. R., J. R. Knight, A. A. Scaife, C. K. Folland, and A. Philipp, 2008: Cluster analysis of north Atlantic-European circulation types and links with tropical Pacific sea surface temperatures. J. Climate, 21, 3687-3703, doi: 10.1175/2007jcli1875.1. https://doi.org/10.1175/2007JCLI1875.1
  9. Fleig, A. K., L. M. Tallaksen, H. Hisdal, K. Stahl, and D. M. Hannah, 2010: Inter-comparison of weather and circulation type classifications for hydrological drought development. Phys. Chem. Earth, 35, 507-515, doi:10.1016/j.pce.2009.11.005. https://doi.org/10.1016/j.pce.2009.11.005
  10. Goodess, C. M., and P. D. Jones, 2002: Links between circulation and changes in the characteristics of Iberian rainfall. Int. J. Climatol., 22, 1593-1615, doi:10.1002/joc.810. https://doi.org/10.1002/joc.810
  11. Hisashi, K., N. Yoshinori, and T. Seiji, 2013: Objective classification of the sea level pressure distribution pattern in East Asia: Analysis of the cold half of the year. Geogr. Rev. Japan Ser. A, 86, 95-114, doi:10.4157/grj.86.95 (in Japanese with English abstract). https://doi.org/10.4157/grj.86.95
  12. Hoffmann, P., and K. H. Schlunzen, 2013: Weather pattern classification to represent the urban heat island in present and future climate. J. Appl. Meteor. Climatol., 52, 2699-2714, doi: 10.1175/jamc-d-12-065.1. https://doi.org/10.1175/JAMC-D-12-065.1
  13. Hoinka, K. P., C. Schwierz, and O. Martius, 2006: Synoptic-scale weather patterns during Alpine heavy rain events. Q. J. R. Meteorol. Soc., 132, 2853-2860, doi:10.1256/qj.05.239. https://doi.org/10.1256/qj.05.239
  14. Hsu, C.-H., and F.-Y. Cheng, 2016: Classification of weather patterns to study the influence of meteorological characteristics on PM2.5 concentrations in Yunlin County, Taiwan. Atmos. Environ., 144, 397-408, doi:10.1016/j.atmosenv.2016.09.001. https://doi.org/10.1016/j.atmosenv.2016.09.001
  15. Huth, R., C. Beck, A. Philipp, M. Demuzere, Z. Ustrnul, M. Cahynová, J. Kysely, and O. E. Tveito, 2008: Classifications of atmospheric circulation patterns: recent advances and applications. Ann. N. Y. Acad. Sci., 1146, 105-152, doi:10.1196/annals.1446.019. https://doi.org/10.1196/annals.1446.019
  16. Kohonen, T., 1982: Self-organized formation of topologically correct feature maps. Biol. Cybern., 43, 59-69, doi:10.1007/bf00337288. https://doi.org/10.1007/BF00337288
  17. Kysely, J., 2007: Implications of enhanced persistence of atmospheric circulation for the occurrence and severity of temperature extremes. Int. J. Climatol., 27, 689-695, doi:10.1002/joc.1478. https://doi.org/10.1002/joc.1478
  18. Lee, D.-K., and J.-G. Park, 1999: Regionalization of summer rainfall in South Korea using cluster analysis, Asia-Pac. J. Atmos. Sci., 35, 511-518 (in Korean with English abstract).
  19. Lim, W.-I., and K.-H. Seo, 2018: Investigation on characteristics of summertime extreme temperature events occurred in South Korea using self-organizing map. Atmosphere, 28, 305-315, doi:10.14191/Atmos.2018.28.3.305 (in Korean with English abstract). https://doi.org/10.14191/Atmos.2018.28.3.305
  20. MacQueen, J., 1967: Some methods for classification and analysis of multivariate observations. Proc. fifth Berkeley Symp. on Math. Statist. and Prob., 1, 281-297.
  21. Mukougawa, H., and M. Mabuchi, 2012: Characteristics of atmospheric circulation related to wintertime temperature variation over the Far-East. Annuals of Disas. Prev. Res. Inst., 55, 247-253 (in Japanese with English abstract).
  22. Neal, R., D. Fereday, R. Crocker, and R. E. Comer, 2016: A flexible approach to defining weather patterns and their application in weather forecasting over Europe. Meteor. Appl., 23, 389-400, doi:10.1002/met.1563. https://doi.org/10.1002/met.1563
  23. Neal, R., R. Dankers, A. Saulter, A. Lane, J. Millard, G. Robbins, and D. Price, 2018: Use of probabilistic medium- to long-range weather-pattern forecasts for identifying periods with an increased likelihood of coastal flooding around the UK. Meteorol. Appl., 25, 534-547, doi:10.1002/met.1719. https://doi.org/10.1002/met.1719
  24. Nguyen-Le, D., T. J. Yamada, and D. Tran-Anh, 2017: Classification and forecast of heavy rainfall in northern Kyushu during Baiu season using weather pattern recognition. Atmos. Sci. Lett., 18, 324-329, doi:10.1002/asl.759. https://doi.org/10.1002/asl.759
  25. Ohba, M., S. Kadokura, Y. Yoshida, D. Nohara, and Y. Toyoda, 2015: Anomalous weather patterns in relation to heavy precipitation events in Japan during the Baiu season. J. Hydrometeor., 16, 688-701, doi:10.1175/jhm-d-14-0124.1. https://doi.org/10.1175/JHM-D-14-0124.1
  26. Park, J.-G., and D.-K. Lee, 1998: Cluster analysis and development mechanism of explosive cyclones in East Asia. Asia-Pac. J. Atmos. Sci., 34, 523-547 (in Korean with English abstract).
  27. Philipp, A., P. M. Della-Marta, J. Jacobeit, D. R. Fereday, P. D. Jones, A. Moberg, and H. Wanner, 2007: Longterm variability of daily north Atlantic-European pressure patterns since 1850 classified by simulated annealing clustering. J. Climate, 20, 4065-4095, doi: 10.1175/jcli4175.1. https://doi.org/10.1175/JCLI4175.1
  28. Richardson, D., H. J. Fowler, C. G. Kilsby, and R. Neal, 2018: A new precipitation and drought climatology based on weather patterns. Int. J. Climatol., 38, 630-648, doi:10.1002/joc.5199. https://doi.org/10.1002/joc.5199
  29. Robbins, J., R. Dankers, C. Dashwood, K. Lee, R. Neal, and H. Reeves, 2018: Early warning of landslides in Scotland using probabilistic weather pattern forecasts. Proc. 20th EGU General Assembly 2018, Vien, Austria, EGU2018, 7496.
  30. Steele, E., R. Neal, R. Dankers, N. Fournier, K. Mylne, P. Newell, A. Saulter, A. Skea, and J. Upton, 2018: Using weather pattern typology to identify calm weather windows for local marine operations. Conf. Offshore Tech., OTC-28784-MS, Houston, Texas, USA, doi:10.4043/28784-MS https://doi.org/10.4043/28784-MS
  31. Yoon, D., D.-H. Cha, G. Lee, C. Park, M.-I. Lee, and K.-H. Min, 2018: Impacts of synoptic and local factors on heat wave events over southeastern region of Korea in 2015. J. Geophys. Res.: Atmos., 123, 12081-12096, doi:10.1029/2018JD029247. https://doi.org/10.1029/2018JD029247
  32. Vicente-Serrano, S. M., and J. I. Lopez-Moreno, 2006: The influence of atmospheric circulation at different spatial scales on winter drought variability through a semi-arid climatic gradient in Northeast Spain. Int. J. Climatol., 26, 1427-1453, doi:10.1002/joc.1387. https://doi.org/10.1002/joc.1387
  33. Zhang, Y., A. Ding, H. Mao, W. Nie, D. Zhou, L. Liu, X. Huang, and C. Fu, 2016: Impact of synoptic weather patterns and inter-decadal climate variability on air quality in the North China Plain during 1980-2013. Atmos. Environ., 124, 119-128, doi:10.1016/j.atmosenv.2015.05.063. https://doi.org/10.1016/j.atmosenv.2015.05.063