Recent Progresses in the Growth of Two-dimensional Transition Metal Dichalcogenides

  • Jung, Yeonjoon (Department of Material Science and Engineering, Yonsei University) ;
  • Ji, Eunji (Department of Material Science and Engineering, Yonsei University) ;
  • Capasso, Andrea (Department of Material Science and Engineering, Yonsei University) ;
  • Lee, Gwan-Hyoung (Department of Material Science and Engineering, Yonsei University)
  • Received : 2019.01.07
  • Accepted : 2019.01.21
  • Published : 2019.01.31


Recently, considerable progress and many breakthroughs have been achieved in the growth of two-dimensional materials, especially transition metal dichalcogenides (TMDCs), which attract significant attention owing to their unique properties originating from their atomically thin layered structure. Chemical vapor deposition (CVD) has shown great promise to fabricate large-scale and high-quality TMDC films with exceptional electronic and optical properties. However, the scalable growth of high-quality TMDCs by CVD is yet to meet industrial criteria. Therefore, growth mechanisms should be unveiled for a deeper understanding and further improvement of growth methods are required. This review summarizes the recent progress in the growth methods of TMDCs through CVD and other modified approaches to gain insights into the growth of large-scale and high-quality TMDCs.


Two-dimensional materials;Transition metal dichalcogenides;Growth;Chemical vapor deposition;Coalescence


Supported by : Korea Institute of Energy Technology Evaluation and Planning (KETEP), National Research Foundation of Korea, Yonsei University


  1. L. Tao, K. Chen, Z. Chen, W. Chen, X. Gui, H. Chen, X. Li, and J.-B. Xu, "Centimeter-Scale CVD Growth of Highly Crystalline Single-Layer $MoS_2$ Film with Spatial Homogeneity and the Visualization of Grain Boundaries," ACS Appl. Mater. Interfaces, 9 [13] 12073-81 (2017).
  2. S. Wu, C. Huang, G. Aivazian, J. S. Ross, D. H. Cobden, and X. Xu, "Vapor-Solid Growth of High Optical Quality $MoS_2$ Monolayers with Near-Unity Valley Polarization," ACS Nano, 7 [3] 2768-72 (2013).
  3. A. M. Van Der Zande, P. Y. Huang, D. A. Chenet, T. C. Berkelbach, Y. You, G.-H. Lee, T. F. Heinz, D. R. Reichman, D. A. Muller, and J. C. Hone, "Grains and Grain Boundaries in Highly Crystalline Monolayer Molybdenum Disulphide," Nat. Mater., 12 554-61 (2013).
  4. Z. Lin, Y. Zhao, C. Zhou, R. Zhong, X. Wang, Y. H. Tsang, and Y. Chai, "Controllable Growth of Large-Size Crystalline $MoS_2$ and Resist-Free Transfer Assisted with a Cu Thin Film," Sci. Rep., 5 18596 (2015).
  5. J. Zhang, H. Yu, W. Chen, X. Tian, D. Liu, M. Cheng, G. Xie, W. Yang, R. Yang, and X. Bai, "Scalable Growth of High-Quality Polycrystalline $MoS_2$ Monolayers on $SiO_2$ with Tunable Grain Sizes," ACS Nano, 8 [6] 6024-30 (2014).
  6. Y. Lee, J. Lee, H. Bark, I.-K. Oh, G. H. Ryu, Z. Lee, H. Kim, J. H. Cho, J.-H. Ahn, and C. Lee, "Synthesis of Wafer-Scale Uniform Molybdenum Disulfide Films with Control over the Layer Number Using a Gas Phase Sulfur Precursor," Nanoscale, 6 [5] 2821-26 (2014).
  7. Y.-C. Lin, W. Zhang, J.-K. Huang, K.-K. Liu, Y.-H. Lee, C.-T. Liang, C.-W. Chu, and L.-J. Li, "Wafer-Scale $MoS_2$ Thin Layers Prepared by $MoO_3$ Sulfurization," Nanoscale, 4 [20] 6637-41 (2012).
  8. K. Kang, S. Xie, L. Huang, Y. Han, P. Y. Huang, K. F. Mak, C.-J. Kim, D. Muller, and J. Park, "High-Mobility Three-Atom-Thick Semiconducting Films with Wafer-Scale Homogeneity," Nature, 520 656-60 (2015).
  9. J. D. Cain, F. Shi, J. Wu, and V. P. Dravid, "Growth Mechanism of Transition Metal Dichalcogenide Monolayers: the Role of Self-Seeding Fullerene Nuclei," ACS Nano, 10 [5] 5440-45 (2016).
  10. D. Zhu, H. Shu, F. Jiang, D. Lv, V. Asokan, O. Omar, J. Yuan, Z. Zhang, and C. Jin, "Capture the Growth Kinetics of CVD Growth of Two-Dimensional $MoS_2$," npj 2D Mater. Appl., 1 [1] 1-8 (2017).
  11. G. H. Han, N. J. Kybert, C. H. Naylor, B. S. Lee, J. Ping, J. H. Park, J. Kang, S. Y. Lee, Y. H. Lee, and R. Agarwal, "Seeded Growth of Highly Crystalline Molybdenum Disulphide Monolayers at Controlled Locations," Nat. Commun., 6 [1] 6128 (2015).
  12. Y. H. Lee, X. Q. Zhang, W. Zhang, M. T. Chang, C. T. Lin, K. D. Chang, Y. C. Yu, J. T. W. Wang, C. S. Chang, and L. J. Li, "Synthesis of Large-Area $MoS_2$ Atomic Layers with Chemical Vapor Deposition," Adv. Mater., 24 [17] 2320-25 (2012).
  13. Z. Wang, Q. Huang, P. Chen, S. Guo, X. Liu, X. Liang, and L. Wang, "Metal Induced Growth of Transition Metal Dichalcogenides at Controlled Locations," Sci. Rep., 6 38394 (2016).
  14. X. Ling, Y.-H. Lee, Y. Lin, W. Fang, L. Yu, M. S. Dresselhaus, and J. Kong, "Role of the Seeding Promoter in $MoS_2$ Growth by Chemical Vapor Deposition," Nano Lett., 14 [2] 464-72 (2014).
  15. Y. Li, S. Hao, J. G. DiStefano, A. A. Murthy, E. D. Hanson, Y. Xu, C. Wolverton, X. Chen, and V. P. Dravid, "Site-Specific Positioning and Patterning of $MoS_2$ Monolayers: The Role of Au Seeding," ACS Nano, 12 [9] 8970-76 (2018).
  16. S.-L. Shang, G. Lindwall, Y. Wang, J. M. Redwing, T. Anderson, and Z.-K. Liu, "Lateral Versus Vertical Growth of Two-Dimensional Layered Transition-Metal Dichalcogenides: Thermodynamic Insight into $MoS_2$," Nano Lett., 16 [9] 5742-50 (2016).
  17. S. Wang, Y. Rong, Y. Fan, M. Pacios, H. Bhaskaran, K. He, and J. H. Warner, "Shape Evolution of Monolayer $MoS_2$ Crystals Grown by Chemical Vapor Deposition," Chem. Mater., 26 [22] 6371-79 (2014).
  18. A. Govind Rajan, J. H. Warner, D. Blankschtein, and M. S. Strano, "Generalized Mechanistic Model for the Chemical Vapor Deposition of 2D Transition Metal Dichalcogenide Monolayers," ACS Nano, 10 [4] 4330-44 (2016).
  19. D. Cao, T. Shen, P. Liang, X. Chen, and H. Shu, "Role of Chemical Potential in Flake Shape and Edge Properties of Monolayer $MoS_2$," J. Phys. Chem. C, 119 [8] 4294-301 (2015).
  20. M. Saab and P. Raybaud, "Tuning the Magnetic Properties of $MoS_2$ Single Nanolayers by 3d Metals Edge Doping," J. Phys. Chem. C, 120 [19] 10691-97 (2016).
  21. H. Ye, J. Zhou, D. Er, C. C. Price, Z. Yu, Y. Liu, J. Lowengrub, J. Lou, Z. Liu, and V. B. Shenoy, "Toward a Mechanistic Understanding of Vertical Growth of van der Waals Stacked 2D Materials: A Multiscale Model and Experiments," ACS Nano, 11 [12] 12780-88 (2017).
  22. A. Aljarb, Z. Cao, H.-L. Tang, J.-K. Huang, M. Li, W. Hu, L. Cavallo, and L.-J. Li, "Substrate Lattice-Guided Seed Formation Controls the Orientation of 2D Transition-Metal Dichalcogenides," ACS Nano, 11 [9] 9215-22 (2017).
  23. H. Yu, M. Liao, W. Zhao, G. Liu, X. Zhou, Z. Wei, X. Xu, K. Liu, Z. Hu, and K. Deng, "Wafer-Scale Growth and Transfer of Highly-Oriented Monolayer $MoS_2$ Continuous Films," ACS Nano, 11 [12] 12001-7 (2017).
  24. Q. Ji, Y. Zhang, T. Gao, Y. Zhang, D. Ma, M. Liu, Y. Chen, X. Qiao, P.-H. Tan, and M. Kan, "Epitaxial Monolayer $MoS_2$ on Mica with Novel Photoluminescence," Nano Lett., 13 [8] 3870-77 (2013).
  25. D. Ruzmetov, K. Zhang, G. Stan, B. Kalanyan, G. R. Bhimanapati, S. M. Eichfeld, R. A. Burke, P. B. Shah, T. P. O'Regan, and F. J. Crowne, "Vertical 2D/3D Semiconductor Heterostructures based on Epitaxial Molybdenum Disulfide and Gallium Nitride," ACS Nano, 10 [3] 3580-88 (2016).
  26. M. Okada, T. Sawazaki, K. Watanabe, T. Taniguch, H. Hibino, H. Shinohara, and R. Kitaura, "Direct Chemical Vapor Deposition Growth of WS2 Atomic Layers on Hexagonal Boron Nitride," ACS Nano, 8 [8] 8273-77 (2014).
  27. Y. Zhang, Q. Ji, J. Wen, J. Li, C. Li, J. Shi, X. Zhou, K. Shi, H. Chen, and Y. Li, "Monolayer $MoS_2$ Dendrites on a Symmetry-Disparate $SrTiO_3$ (001) Substrate: Formation Mechanism and Interface Interaction," Adv. Funct. Mater., 26 [19] 3299-305 (2016).
  28. J. Chen, X. Zhao, G. Grinblat, Z. Chen, S. J. Tan, W. Fu, Z. Ding, I. Abdelwahab, Y. Li, and D. Geng, "Homoepitaxial Growth of Large-Scale Highly Organized Transition Metal Dichalcogenide Patterns," Adv. Mater., 30 [4] 1704674 (2018).
  29. X. Zhang, T. H. Choudhury, M. Chubarov, Y. Xiang, B. Jariwala, F. Zhang, N. Alem, G.-C. Wang, J. A. Robinson, and J. M. Redwing, "Diffusion-Controlled Epitaxy of Large Area Coalesced $WSe_2$ Monolayers on Sapphire," Nano Lett., 18 [2] 1049-56 (2018).
  30. S. H. Choi, B. Stephen, J. H. Park, J. S. Lee, S. M. Kim, W. Yang, and K. K. Kim, "Water-Assisted Synthesis of Molybdenum Disulfide Film with Single Organic Liquid Precursor," Sci. Rep., 7 [1] 1983 (2017).
  31. T. Millner and J. Neugebauer, "Volatility of the Oxides of Tungsten and Molybdenum in the Presence of Water Vapour," Nature, 163 601-2 (1949).
  32. G. Belton and A. Jordan, "The Volatilization of Molybdenum in the Presence of Water Vapor," J. Phys. Chem., 69 [6] 2065-71 (1965).
  33. G. Belton and R. McCarron, "The Volatilization of Tungsten in the Presence of Water Vapor," J. Phys. Chem., 68 [7] 1852-56 (1964).
  34. W. Chen, J. Zhao, J. Zhang, L. Gu, Z. Yang, X. Li, H. Yu, X. Zhu, R. Yang, and D. Shi, "Oxygen-Assisted Chemical Vapor Deposition Growth of Large Single-Crystal and High-Quality Monolayer $MoS_2$," J. Am. Chem. Soc., 137 [50] 15632-35 (2015).
  35. J. Zhou, J. Lin, X. Huang, Y. Zhou, Y. Chen, J. Xia, H. Wang, Y. Xie, H. Yu, and J. Lei, "A Library of Atomically Thin Metal Chalcogenides," Nature, 556 355-59 (2018).
  36. S. Li, Y.-C. Lin, W. Zhao, J. Wu, Z. Wang, Z. Hu, Y. Shen, D.-M. Tang, J. Wang, and Q. Zhang, "Vapour-Liquid-Solid Growth of Monolayer $MoS_2$ Nanoribbons," Nat. Mater., 17 535-42 (2018).
  37. S. Li, S. Wang, D.-M. Tang, W. Zhao, H. Xu, L. Chu, Y. Bando, D. Golberg, and G. Eda, "Halide-Assisted Atmospheric Pressure Growth of Large $WSe_2\;and\;WS_2$ Monolayer Crystals," Appl. Mater. Today, 1 [1] 60-6 (2015).
  38. Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou, G. Ye, R. Vajtai, and B. I. Yakobson, "Vertical and In-Plane Heterostructures from $WS_2/MoS_2$ Monolayers," Nat. Mater., 13 1135-42 (2014).
  39. A.-Y. Lu, H. Zhu, J. Xiao, C.-P. Chuu, Y. Han, M.-H. Chiu, C.-C. Cheng, C.-W. Yang, K.-H. Wei, and Y. Yang, "Janus Monolayers of Transition Metal Dichalcogenides," Nat. Nanotechnol., 12 744-49 (2017).
  40. J. Zhang, S. Jia, I. Kholmanov, L. Dong, D. Er, W. Chen, H. Guo, Z. Jin, V. B. Shenoy, and L. Shi, "Janus Monolayer Transition-Metal Dichalcogenides," ACS Nano, 11 [8] 8192-98 (2017).
  41. D. Kong, H. Wang, J. J. Cha, M. Pasta, K. J. Koski, J. Yao, and Y. Cui, "Synthesis of $MoS_2\;and\;MoSe_2$ Films with Vertically Aligned Layers," Nano Lett., 13 [3] 1341-47 (2013).
  42. L. Zhang, K. Liu, A. B. Wong, J. Kim, X. Hong, C. Liu, T. Cao, S. G. Louie, F. Wang, and P. Yang, "Three-Dimensional Spirals of Atomic Layered $MoS_2$," Nano Lett., 14 [11] 6418-23 (2014).
  43. J. Zhang, M. Ye, S. Bhandari, A. K. M. Muqri, F. Long, S. Bigham, Y. K. Yap, and J. Y. Suh, "Enhanced Second and Third Harmonic Generations of Vertical and Planar Spiral $MoS_2$ Nanosheets," Nanotechnology, 28 [29] 295301 (2017).
  44. J. Verble, T. Wietling, and P. Reed, "Rigid-Layer Lattice Vibrations and van der Waals Bonding in Hexagonal $MoS_2$," Solid State Commun., 11 [8] 941-44 (1972).
  45. D. Kong, W. Dang, J. J. Cha, H. Li, S. Meister, H. Peng, and Z. Liu, and Y. Cui, "Few-Layer Nanoplates of $Bi_2Se_3$ and $Bi_2Te_3$ with Highly Tunable Chemical Potential," Nano Lett., 10 [6] 2245-50 (2010).
  46. J. Zheng, X. Yan, Z. Lu, H. Qiu, G. Xu, X. Zhou, P. Wang, X. Pan, K. Liu, and L. Jiao, "High-Mobility Multilayered $MoS_2$ Flakes with Low Contact Resistance Grown by Chemical Vapor Deposition," Adv. Mater., 29 [13] 1604540 (2017).
  47. S. M. Shinde, K. P. Dhakal, X. Chen, W. S. Yun, J. Lee, H. Kim, and J.-H. Ahn, "Stacking-Controllable Interlayer Coupling and Symmetric Configuration of Multilayered $MoS_2$," NPG Asia Mater., 10 e468 (2018).
  48. J. C. Park, S. J. Yun, H. Kim, J.-H. Park, S. H. Chae, S.-J. An, J.-G. Kim, S. M. Kim, K. K. Kim, and Y. H. Lee, "Phase-Engineered Synthesis of Centimeter-Scale 1T′-and 2H-Molybdenum Ditelluride Thin Films," ACS Nano, 9 [6] 6548-54 (2015).
  49. S. Cho, S. Kim, J. H. Kim, J. Zhao, J. Seok, D. H. Keum, J. Baik, D.-H. Choe, K. J. Chang, and K. Suenaga, "Phase Patterning for Ohmic Homojunction Contact in $MoTe_2$," Science, 349 [6248] 625-28 (2015).
  50. S. Song, D. H. Keum, S. Cho, D. Perello, Y. Kim, and Y. H. Lee, "Room Temperature Semiconductor-Metal Transition of $MoTe_2$ Thin Films Engineered by Strain," Nano Lett., 16 [1] 188-93 (2015).
  51. Y. Li, K.-A. N. Duerloo, K. Wauson, and E. J. Reed, "Structural Semiconductor-to-Semimetal Phase Transition in Two-Dimensional Materials Induced by Electrostatic Gating," Nat. Commun., 7 10671 (2016).
  52. J. H. Sung, H. Heo, S. Si, Y. H. Kim, H. R. Noh, K. Song, J. Kim, C.-S. Lee, S.-Y. Seo, and D.-H. Kim, "Coplanar Semiconductor-Metal Circuitry Defined on Few-Layer $MoTe_2$ via Polymorphic Heteroepitaxy," Nat. Nanotechnol., 12 1064-70 (2017).
  53. T. A. Empante, Y. Zhou, V. Klee, A. E. Nguyen, I.-H. Lu, M. D. Valentin, S. A. Naghibi Alvillar, E. Preciado, A. J. Berges, and C. S. Merida, "Chemical Vapor Deposition Growth of Few-Layer $MoTe_2$ in the 2H, 1T′, and 1T Phases: Tunable Properties of $MoTe_2$ Films," ACS Nano, 11 [1] 900-5 (2017).