DOI QR코드

DOI QR Code

Germanium Nanoparticle-Dispersed Reduced Graphene Oxide Balls Synthesized by Spray Pyrolysis for Li-Ion Battery Anode

  • Kim, Jin Koo (Department of Materials Science and Engineering, Korea University) ;
  • Park, Gi Dae (Department of Materials Science and Engineering, Korea University) ;
  • Kang, Yun Chan (Department of Materials Science and Engineering, Korea University)
  • Received : 2018.10.18
  • Accepted : 2018.12.05
  • Published : 2019.01.31

Abstract

Simple fabrication of a powdered Ge-reduced graphene oxide (Ge-rGO) composite via spray pyrolysis and reduction is introduced herein. Successful incorporation of the rGO nanosheets with Ge hindered the aggregation of Ge and conferred enhanced structural stability to the composite by alleviating the mechanical stress associated with drastic volume changes during repeated cycling. The Li-ion storage performance of Ge-rGO was compared with that of powdered Ge metal. The reversible discharge capacity of Ge-rGO at the $200^{th}$ cycle was $748mA\;h\;g^{-1}$ at a current density of $1.0A\;g^{-1}$ and Ge-rGO showed a capacity of $375mA\;h\;g^{-1}$ even at a high current density of $5.0A\;g^{-1}$. The excellent performance of Ge-rGO is attributed to the structural robustness, enhanced electrical conductivity, and formation of open channels between the rGO nanosheets, which facilitated electrolyte penetration for improved Li-ion diffusion.

Keywords

Lithium ion batteries;Germanium;Graphene;Carbon composite;Spray pyrolysis

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. K. Kang, Y. S. Meng, J. Breger, C. P. Grey, and G. Ceder, "Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries," Science, 311 [5763] 977-80 (2006). https://doi.org/10.1126/science.1122152
  2. B. Kang and G. Ceder, "Battery Materials for Ultrafast Charging and Discharging," Nature, 458 190-93 (2009). https://doi.org/10.1038/nature07853
  3. L. Ji, Z. Lin, M. Alcoutlabi, and X. Zhang, "Recent Developments in Nanostructured Anode Materials for Rechargeable Lithium-Ion Batteries," Energy Environ. Sci., 4 [8] 2682-99 (2011). https://doi.org/10.1039/c0ee00699h
  4. L. Lu, X. Han, J. Li, J. Hua, and M. Ouyang, "A Review on the Key Issues for Lithium-Ion Battery Management in Electric Vehicles," J. Power Sources, 226 272-88 (2013). https://doi.org/10.1016/j.jpowsour.2012.10.060
  5. S. Goriparti, E. Miele, F. De Angelis, E. Di Fabrizio, R. Proietti Zaccaria, and C. Capiglia, "Review on Recent Progress of Nanostructured Anode Materials for Li-Ion Batteries," J. Power Sources, 257 421-43 (2014). https://doi.org/10.1016/j.jpowsour.2013.11.103
  6. X. Li, J. Liang, Z. Hou, W. Zhang, Y. Wang, Y. Zhu, and Y. Qian, "The Design of a High-Energy Li-Ion Battery Using Germanium-Based Anode and $LiCoO_2$ Cathode," J. Power Sources, 293 868-75 (2015). https://doi.org/10.1016/j.jpowsour.2015.06.031
  7. T. Kennedy, E. Mullane, H. Geaney, M. Osiak, C. O'Dwyer, and K. M. Ryan, "High-Performance Germanium Nanowire-Based Lithium-Ion Battery Anodes Extending over 1000 Cycles through in situ Formation of a Continuous Porous Network," Nano Lett., 14 [2] 716-23 (2014). https://doi.org/10.1021/nl403979s
  8. D.-J. Xue, S. Xin, Y. Yan, K.-C. Jiang, Y.-X. Yin, Y.-G. Guo, and L.-J. Wan, "Improving the Electrode Performance of Ge through Ge@C Core-Shell Nanoparticles and Graphene Networks," J. Am. Chem. Soc., 134 [5] 2512-15 (2012). https://doi.org/10.1021/ja211266m
  9. M. H. Park, Y. Cho, K. Kim, J. Kim, M. Liu, and J. Cho, "Germanium Nanotubes Prepared by Using the Kirkendall Effect as Anodes for High-Rate Lithium Batteries," Angew. Chem. Int. Ed., 50 [41] 9647-50 (2011). https://doi.org/10.1002/anie.201103062
  10. D. T. Ngo, R. S. Kalubarme, H. T. T. Le, J. G. Fisher, C.-N. Park, I.-D. Kim, and C.-J. Park, "Carbon-Interconnected Ge Nanocrystals as an Anode with Ultra-Long-Term Cyclability for Lithium Ion Batteries," Adv. Funct. Mater., 24 [33] 5291-98 (2014). https://doi.org/10.1002/adfm.201400888
  11. J. D. Ocon, J. K. Lee, and J. Lee, "High Energy Density Germanium Anodes for Next Generation Lithium Ion Batteries," Appl. Chem. Eng., 25 [1] 1-13 (2014). https://doi.org/10.14478/ace.2014.1008
  12. K. H. Seng, M. H. Park, Z. P. Guo, H. K. Liu, and J. Cho, "Self-Assembled Germanium/Carbon Nanostructures as High-Power Anode Material for the Lithium-Ion Battery," Angew. Chem. Int. Ed., 124 [23] 5755-59 (2012). https://doi.org/10.1002/ange.201201488
  13. X. Su, Q. Wu, J. Li, X. Xiao, A. Lott, W. Lu, B. W. Sheldon, and J. Wu, "Silicon-Based Nanomaterials for Lithium-Ion Batteries: A Review," Adv. Energy Mater., 4 [1] 1300882 (2014). https://doi.org/10.1002/aenm.201300882
  14. S. Fang, L. Shen, H. Zheng, and X. Zhang, "Ge-Graphene-Carbon Nanotube Composite Anode for High Performance Lithium-Ion Batteries," J. Mater. Chem. A, 3 [4] 1498-503 (2015). https://doi.org/10.1039/C4TA04350B
  15. X. Gao, W. Luo, C. Zhong, D. Wexler, S. L. Chou, H. K. Liu, Z. Shi, G. Chen, K. Ozawa, and J. Z. Wang, "Novel Germanium/Polypyrrole Composite for High Power Lithium-Ion Batteries," Sci. Rep., 4 6095 (2014).
  16. S. Wu, C. Han, J. Iocozzia, M. Lu, R. Ge, R. Xu, and Z. Lin, "Germanium-Based Nanomaterials for Rechargeable Batteries," Angew. Chem. Int. Ed., 55 [28] 7898-922 (2016). https://doi.org/10.1002/anie.201509651
  17. W. He, H. Tian, X. Wang, F. Xin, and W. Han, "Three-Dimensional Interconnected Network $GeO_x$/Multi-Walled CNT Composite Spheres as High-Performance Anodes for Lithium Ion Batteries," J. Mater. Chem. A, 3 [38] 19393-401 (2015). https://doi.org/10.1039/C5TA04456A
  18. L. Wang, K. Bao, Z. Lou, G. Liang, and Q. Zhou, "Chemical Synthesis of Germanium Nanoparticles with Uniform Size as Anode Materials for Lithium Ion Batteries," Dalt. Trans., 45 [7] 2814-17 (2016). https://doi.org/10.1039/C5DT04749H
  19. C. K. Chan, X. F. Zhang, and Y. Cui, "High Capacity Li-Ion Battery Anodes Using Ge Nanowires," Nano Lett., 8 [1] 307-9 (2008). https://doi.org/10.1021/nl0727157
  20. G.-H. Lee, H.-W. Shim, and D.-W. Kim, "Superior Long-Life and High-Rate Ge Nanoarrays Anchored on Cu/C Nanowire Frameworks for Li-Ion Battery Electrodes," Nano Energy, 13 218-25 (2015). https://doi.org/10.1016/j.nanoen.2015.02.023
  21. H. S. Im, Y. R. Lim, Y. J. Cho, J. Park, E. H. Cha, and H. S. Kang, "Germanium and Tin Selenide Nanocrystals for High-Capacity Lithium Ion Batteries: Comparative Phase Conversion of Germanium and Tin," J. Phys. Chem. C, 118 [38] 21884-88 (2014). https://doi.org/10.1021/jp507337c
  22. S. Wu, R. Xu, M. Lu, R. Ge, J. Iocozzia, C. Han, B. Jiang, and Z. Lin, "Graphene-Containing Nanomaterials for Lithium- Ion Batteries," Adv. Energy Mater., 5 [21] 1500400 (2015).
  23. S. H. Choi, K. Y. Jung, and Y. C. Kang, "Amorphous $GeO_x$-Coated Reduced Graphene Oxide Balls with Sandwich Structure for Long-Life Lithium-Ion Batteries," ACS Appl. Mater. Interfaces, 7 [25] 13952-59 (2015). https://doi.org/10.1021/acsami.5b02846
  24. J. K. Kim, G. D. Park, J. H. Kim, J. H. Kim, and Y. C. Kang, "Electrochemical Properties of Amorphous $GeO_x$-C Composite Microspheres Prepared by a One-Pot Spray Pyrolysis Process," Ceram. Int., 43 [7] 5534-40 (2017). https://doi.org/10.1016/j.ceramint.2017.01.076
  25. Y. J. Cho, H. S. Im, H. S. Kim, Y. Myung, S. H. Back, Y. R. Lim, C. S. Jung, D. M. Jang, J. Park, E. H. Cha, W. I. Cho, F. Shojaei, and H. S. Kang, "Tetragonal Phase Germanium Nanocrystals in Lithium Ion Batteries," ACS Nano, 7 [10] 9075-84 (2013).
  26. J. Gu, S. M. Collins, A. I. Carim, X. Hao, B. M. Bartlett, and S. Maldonado, "Template-Free Preparation of Crystalline Ge Nanowire Film Electrodes via an Electrochemical Liquid-Liquid-Solid Process in Water at Ambient Pressure and Temperature for Energy Storage," Nano Lett., 12 [9] 4617-23 (2012). https://doi.org/10.1021/nl301912f
  27. C. Wang, J. Ju, Y. Yang, Y. Tang, J. Lin, Z. Shi, R. P. S. Han, and F. Huang, "In situ Grown Graphene-Encapsulated Germanium Nanowires for Superior Lithium-Ion Storage Properties," J. Mater. Chem. A, 1 [31] 8897-902 (2013). https://doi.org/10.1039/c3ta11313b
  28. J.-G. Ren, Q.-H. Wu, H. Tang, G. Hong, W. Zhang, and S.-T. Lee, "Germanium-Graphene Composite Anode for High-Energy Lithium Batteries with Long Cycle Life," J. Mater. Chem. A, 1 [5] 1821-26 (2013). https://doi.org/10.1039/C2TA01286C
  29. J. Cheng and J. Du, "Facile Synthesis of Germanium-Graphene Nanocomposites and Their Application as Anode Materials for Lithium Ion Batteries," CrystEngComm, 14 [2] 397-400 (2012). https://doi.org/10.1039/C1CE06251D
  30. C. Gao, N. D. Kim, R. Villegas Salvatierra, S.-K. Lee, L. Li, Y. Li, J. Sha, G. A. L. Silva, H. Fei, E. Xie, and J. M. Tour, "Germanium on Seamless Graphene Carbon Nanotube Hybrids for Lithium Ion Anodes," Carbon, 123 433-39 (2017). https://doi.org/10.1016/j.carbon.2017.07.081
  31. Y. Xu, X. Zhu, X. Zhou, X. Liu, Y. Liu, Z. Dai, and J. Bao, "Ge Nanoparticles Encapsulated in Nitrogen-Doped Reduced Graphene Oxide as an Advanced Anode Material for Lithium-Ion Batteries," J. Phys. Chem. C, 118 [49] 28502-08 (2014). https://doi.org/10.1021/jp509783h
  32. D. Li, C. Feng, H. Liu, and Z. Guo, "Hollow Carbon Spheres with Encapsulated Germanium as an Anode Material for Lithium Ion Batteries," J. Mater. Chem. A, 3 [3] 978-81 (2015). https://doi.org/10.1039/C4TA05982D
  33. D. Li, K. H. Seng, D. Shi, Z. Chen, H. K. Liu, and Z. Guo, "A Unique Sandwich-Structured C/Ge/Graphene Nanocomposite as an Anode Material for High Power Lithium Ion Batteries," J. Mater. Chem. A, 1 [45] 14115-21 (2013). https://doi.org/10.1039/c3ta13324a
  34. J. K. Kim, J. H. Kim, and Y. C. Kang, "Electrochemical Properties of Multicomponent Oxide and Selenide Microspheres Containing Co and Mo Components with Several Tens of Vacant Nanorooms Synthesized by Spray Pyrolysis," Chem. Eng. J., 333 665-77 (2018). https://doi.org/10.1016/j.cej.2017.09.169
  35. Yoon, C.-M. Park, and H.-J. Sohn, "Electrochemical Characterizations of Germanium and Carbon-Coated Germanium Composite Anode for Lithium-Ion Batteries," Electrochem. Solid-State Lett., 11 [4] A42-5 (2008). https://doi.org/10.1149/1.2836481
  36. A. M. Chockla, M. G. Panthani, V. C. Holmberg, C. M. Hessel, D. K. Reid, T. D. Bogart, J. T. Harris, C. B. Mullins, and B. A. Korgel, "Electrochemical Lithiation of Graphene-Supported Silicon and Germanium for Rechargeable Batteries," J. Phys. Chem. C, 116 [22] 11917-23 (2012). https://doi.org/10.1021/jp302344b
  37. C. Zhang, Z. Lin, Z. Yang, D. Xiao, P. Hu, H. Xu, Y. Duan, S. Pang, L. Gu, and G. Cui, "Hierarchically Designed Germanium Microcubes with High Initial Coulombic Efficiency toward Highly Reversible Lithium Storage," Chem. Mater., 27 [6] 2189-94 (2015). https://doi.org/10.1021/acs.chemmater.5b00218
  38. E. Yoo, J. Kim, E. Hosono, H. Zhou, T. Kudo, and I. Honma, "Large Reversible Li Storage of Graphene Nanosheet Families for Use in Rechargeable Lithium Ion Batteries," Nano Lett., 8 [8] 2277-82 (2008). https://doi.org/10.1021/nl800957b
  39. S. Jin, N. Li, H. Cui, and C. Wang, "Growth of the Vertically Aligned Graphene@Amorphous $GeO_x$ Sandwich Nanoflakes and Excellent Li Storage Properties," Nano Energy, 2 [6] 1128-36 (2013). https://doi.org/10.1016/j.nanoen.2013.09.008
  40. K. Lee, S. Y. Shin, and Y. S. Yoon, "$Fe_3O_4 Nanoparticles on MWCNTs Backbone for Lithium Ion Batteries," J. Korean Ceram. Soc., 53 [3] 376-80 (2016). https://doi.org/10.4191/kcers.2016.53.3.376