DOI QR코드

DOI QR Code

Studies on Damage Properties of MgO-C Refractories through Hertzian Indentation at Room and High Temperatures

  • Cho, Geun-Ho (School of Materials and Engineering, Changwon National University) ;
  • Byeun, Yunki (Technical Research Laboratories, POSCO) ;
  • Jung, Yeon-Gil (School of Materials and Engineering, Changwon National University)
  • Received : 2018.11.07
  • Accepted : 2019.01.07
  • Published : 2019.01.31

Abstract

MgO-C refractories are used in basic furnaces and steel ladles due to their many desirable properties, such as excellent thermal shock resistance via low thermal expansion, and high thermal conductivity. However, the mechanical and thermal properties of the refractory continuously deteriorate by spalling phenomena and pore generation due to the oxidation of graphite, used as a carbon source, indicating that the characteristics and performance of MgO-C refractories need to be improved by using a new material or composition. In this study, the use of a Hertzian indentation test as a method for determining the damage and fracture behavior of an MgO-C refractory is described. The results highlight that Hertzain indentation tests can be one of the important evaluation tools for quasi-plastic damage accumulation of MgO-C refractories during falling process of scrap metal.

Keywords

Hertzian indentation;MgO-C Refractory;Damage behavior;Fracture behavior;Mechanical property

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. S. Zhang, N. K. Marriott, and W. E. Lee, "Thermochemistry and Microstructure of MgO-C Refractories Containing Varous Antioxidanats," J. Eur. Ceram. Soc., 21 [8] 1037-47 (2001). https://doi.org/10.1016/S0955-2219(00)00308-3
  2. K. Horii, N. Tsutsui, Y. Kitano, and T. Kato, "Processing and Reusing Technologies for Steelmaking Slag," Nippon Steel Tech. Rep., 104 123-29 (2013).
  3. H. Harmuth, "Stability of Crack Propagation Associated with Fracture Energy Determined by Wedge Splitting Specimen," Theor. Appl. Fract. Mech., 23 [1] 103-8 (1995). https://doi.org/10.1016/0167-8442(95)00008-3
  4. M. Bag, S. Adak, and R. Sarkar, "Study on Low Carbon Containing MgO-C Refractory: Use of Nano Carbon," Ceram. Int., 38 [3] 2339-46 (2012). https://doi.org/10.1016/j.ceramint.2011.10.086
  5. T. Zhu, Y. Li, S. Jin, S. Sang, Q Wang, L. Zhao, Y. Li, and S. Li, "Microstructure and Mechanical Properties of MgOC Refractories Containing Expansion Graphite," Ceram. Int., 39 [4] 4529-37 (2013). https://doi.org/10.1016/j.ceramint.2012.11.049
  6. G. Wei, B. Zhu, X. Li, and Z. Ma, "Microstructure and Mechanical Properties of Low Carbon MgO-C Refractories Bonded by an Fe Nanosheet-Modified Phenol Resin," Ceram. Int., 41 [1] 1553-66 (2014). https://doi.org/10.1016/j.ceramint.2014.09.091
  7. H. Harmuth, K. Rieder, M. Krobath, and E. Tschegg, "Investigation of the Nonlinear Fracture Behaviour of Ordinary Ceramic Refractory Materials," Mater. Sci. Eng., A, 214 [1] 53-61 (1996). https://doi.org/10.1016/0921-5093(96)10221-5
  8. B. Hashemi, Z. A. Nemati, and M. A. Faghihi-Sani, "Effects of Resin and Graphite Content on Density and Oxidation Behavior of MgO-C Refractory Bricks," Ceram. Int., 32 [3] 313-19 (2006). https://doi.org/10.1016/j.ceramint.2005.03.008
  9. S. Mauthoor, R. Mohee, and P. Kowlesser, "An Assessment on the Recycling Opportunities of Wastes Emanating from Scrap Metal Processing in Mauritius," Waste Manage., 34 [10] 1800-5 (2014). https://doi.org/10.1016/j.wasman.2013.12.014
  10. K. S. Lee, G. H. Cho, Y. G. Jung, and Y. K. Byeun, "Effect of Carbon Content on the Mechanical behavior of MgO-C Refractories Characterized by Hertzain Indentation," Ceram. Int., 42 [1] 9955-62 (2016). https://doi.org/10.1016/j.ceramint.2016.03.097
  11. F. Guiberteau, N. P. Padture, H. Cai, and B. R. Lawn, "Indentation Fatigue: A Simple Cyclic Hertzian Test for Measuring Damage Accumulation in Polycrystalline Ceramics," Philos. Mag. A, 68 1003-16 (1993). https://doi.org/10.1080/01418619308219382
  12. H. Hertz, Verhandlungen des Verins Zur Bef orderung des Gewerbe Fleisses; Vol. 61, p. 410, Macmillan, London, 1882.
  13. B. R. Lawn, Fracture of Brittle Solids; Vol. 1, pp. 249-306, Cambridge University Press, Cambridge, 1993.
  14. B. R. Lawn, "Indentation of Ceramics with Spheres: A Century after Hertz," J. Am. Ceram. Soc., 81 [8] 1977-94 (1998). https://doi.org/10.1111/j.1151-2916.1998.tb02580.x
  15. H. Cai, M. A. Stevens Kalceff, and B. R. Lawn, "Deformation and Fracture of Mica Containing Glass-Ceramics in Hertzian Contacts," J. Mater. Res., 9 [3] 762-70 (1994). https://doi.org/10.1557/JMR.1994.0762
  16. H. Zhang, Z. Z Fang, and Q. Lu, "Characterization of a Bilayer WC-Co Hardmetal Using Herzian Indentation Technique," Int. J. Refract. Met. Hard Mater., 27 [2] 317-22 (2009). https://doi.org/10.1016/j.ijrmhm.2008.07.014
  17. B. R. Lawn, S. K. Lee, I. M. Peterson, and S. Wuttiphan, "Model of Strength Degradation from Hertzian Contact Damage in Tough Ceramics," J. Am. Ceram. Soc., 81 [6] 1509-20 (1998).
  18. K. Zeng, K. Breder, D. J. Rowcliffe, and C. Herrstrom, "Elastic Modulus Determined by Hertzian Indentation," J. Mater. Sci. Technol., 27 [14] 3789-92 (1992).
  19. S. H. Cheon, H. S. Kong, and B. S. Jun., "Kinetics of Oxidation, and Effects of TiC Oxidation Resistance in MgO-Carbon Refractory," J. Korean Ceram. Soc., 41 [9] 657-62 (2004). https://doi.org/10.4191/KCERS.2004.41.9.657