DOI QR코드

DOI QR Code

Effects of Low-Temperature Sintering on Varistor Properties and Stability of VMCDNB-Doped Zinc Oxide Ceramics

  • Nahm, Choon-W. (Semiconductor Ceramics Laboratory, Department of Electrical Engineering, Dongeui University)
  • Received : 2018.11.08
  • Accepted : 2019.01.12
  • Published : 2019.01.31

Abstract

The varistor properties and stability against dc-accelerated stress of $V_2O_5-Mn_3O_4-Co_3O_4-Dy_2O_3-Nb_2O_5-Bi_2O_3$ (VMCDNB)-doped zinc oxide ceramics sintered at $850-925^{\circ}C$ were investigated. Increasing the sintering temperature increased the average grain size from 4.6 to 8.7 mm and decreased the density of the sintered pellet density from 5.54 to $5.42g/cm^3$. The breakdown field decreased from 5919 to 1465 V/cm because of the increase in the average grain size. Zinc oxide ceramics sintered at $875^{\circ}C$ showed the highest nonlinear coefficient (43.6) and the highest potential barrier height (0.96 eV). Zinc oxide ceramics sintered at $850^{\circ}C$ showed the highest stability: the variation rate of the breakdown field was -2.0% and the variation rate of the nonlinear coefficient was -23.3%, after application of the specified stress (applied voltage/temperature/time).

Keywords

Sintering temperature;Electrical properties;Stress;Varistors

Acknowledgement

Supported by : Dongeui University

References

  1. M. Matsuoka, "Nonohmic Properties of Zinc Oxide Ceramics," Jpn. J. Appl. Phys., 10 [6] 736-46 (1971). https://doi.org/10.1143/JJAP.10.736
  2. L. M. Levinson and H. R. Philipp, "The Physics of Metal Oxide Varistors," J. Appl. Phys., 46 [3] 1332-41 (1975). https://doi.org/10.1063/1.321701
  3. L. M. Levinson and H. R. Philipp, "Zinc Oxide Varistor-A Review," Am. Ceram. Soc. Bull., 65 [4] 639- 46 (1986).
  4. T. K. Gupta, "Application of Zinc Oxide Varistor," J. Am. Ceram. Soc., 73 [7] 1817-40 (1990). https://doi.org/10.1111/j.1151-2916.1990.tb05232.x
  5. D. R. Clarke, "Varistor Ceramics," J. Am. Ceram. Soc., 82 [3] 485-502 (1999). https://doi.org/10.1111/j.1151-2916.1999.tb01793.x
  6. X. U. Dong, S. Xiaofeng, C. Xiaonong, Y. Juan, F. Yuee, Y. Hongming, and S. Liyi, "Microstructure and Electrical Properties of $Lu_2O_3$-doped $ZnO-Bi_2O_3$-based Varistor Ceramics," Trans. Nonferrous Met. Soc. China, 20 [12] 2303-8 (2012). https://doi.org/10.1016/S1003-6326(10)60645-0
  7. X. U. Dong, W. U. Jie-ting, J. Lei, X. U. Hongxing, Z. Peimei, Y. U. Renhong, and C. Xiaonong. "Highly Nonlinear Property and Threshold Voltage of $Sc_2O_3$ doped $ZnO-Bi_2O_3$-based Varistor Ceramics," J. Rare Earths, 31 [2] 158-63 (2013). https://doi.org/10.1016/S1002-0721(12)60251-8
  8. K. Mukae, K. Tsuda, and I. Nagasawa, "Non-Ohmic Properties of ZnO-Rare Earth Metal Oxide-$Co_3O_4$ Ceramics," Jpn. J. Appl. Phys., 16 [8] 1361-68 (1977). https://doi.org/10.1143/JJAP.16.1361
  9. K. Mukae, "Zinc Oxide Varistors with Praseodymium Oxide," Am. Ceram. Soc. Bull., 66 [10] 1329-31 (1987).
  10. C.-W. Nahm, "The Nonlinear Properties and Stability of $ZnO-Pr_6O_{11}-CoO-Cr_2O_3-Er_2O_3$ Ceramic Varistors," Mater. Lett., 47 [3] 182-87 (2001) https://doi.org/10.1016/S0167-577X(00)00262-7
  11. J.-K. Tsai and T.-B. Wu, "Non-Ohmic Characteristics of $ZnO-V_2O_5$ Ceramics," J. Appl. Phys., 76 [8] 4817-22 (1994). https://doi.org/10.1063/1.357254
  12. J.-K. Tsai and T.-B. Wu, "Microstructure and Nonohmic Properties of Binary $ZnO-V_2O_5$ Ceramics Sintered at $900^{\circ}C$," Mater. Lett., 26 [3] 199-203 (1996). https://doi.org/10.1016/0167-577X(95)00217-0
  13. C.-W. Nahm, "Influence of Nb Addition on Microstructure, Electrical, Dielectric Properties, and Aging Behavior of MnCoDy Modified Zn-V-based Varistors," J. Mater. Sci.: Mater. Electron., 21 [6] 540-47 (2010). https://doi.org/10.1007/s10854-009-9954-8
  14. C.-W. Nahm, "DC Accelerated Aging Behavior of Co-Dy-Nb doped Zn-V-M-based Varistors with Sintering Process," J. Mater. Sci.: Mater. Electron., 22 [4] 444-51(2011). https://doi.org/10.1007/s10854-010-0157-0
  15. C.-W. Nahm, "Effect of Sintering Process on Electrical Properties and Ageing Behavior of $ZnO-V_2O_5-MnO_2-Nb_2O_5$ Varistor Ceramics," J. Mater. Sci.: Mater. Electron., 23 [2] 457-63 (2012).
  16. C.-W. Nahm, "Improvement of Electrical Properties of $V_2O_5$ Modified ZnO Ceramics by Mn-doping for Varistor Applications," J. Mater. Sci.: Mater. Electron., 19 [10] 1023-29 (2008). https://doi.org/10.1007/s10854-007-9542-8
  17. C.-W. Nahm, "Effect of $Dy_2O_3$ on Microstructure and Electrical Properties of $ZnO-V_2O_5-MnO_2-CoO$ Ceramics," J. Mater. Sci.: Mater. Electron., 22 [11] 1674-80 (2011). https://doi.org/10.1007/s10854-011-0344-7
  18. C.-W. Nahm, "$Nb_2O_5$ Doping Effect of on Electrical Properties of $ZnO-V_2O_5-Mn_3O_4$ Varistor Ceramics," Ceram. Int., 38 [6] 5281-85 (2012). https://doi.org/10.1016/j.ceramint.2012.02.052
  19. C.-W. Nahm, "Effect of $Bi_2O_3$ Doping on Microstructure and Electrical Properties of $ZnO-V_2O_5-Mn_3O_4$ Semiconducting Ceramics," J. Mater. Sci.: Mater. Electron., 28 [1] 903-8 (2017). https://doi.org/10.1007/s10854-016-5605-z
  20. J. C. Wurst and J. A. Nelson, "Lineal Intercept Technique for Measuring Grain size in Two-Phase Polycrystalline Ceramics," J. Am. Ceram. Soc., 55 [97-12] 109-11 (1972). https://doi.org/10.1111/j.1151-2916.1972.tb11224.x
  21. M. Mukae, K. Tsuda, and I. Nagasawa, "Capacitance-vs-Voltage Characteristics of ZnO Varistor," J. Appl. Phys., 50 [6] 4475-76 (1979). https://doi.org/10.1063/1.326411
  22. J. Fan and R. Freer, "Deep Level Transient Spectroscopy of Zinc Oxide Varistors Doped with Aluminum Oxide and/or Silver Oxide," J. Am. Ceram. Soc., 77 [10] 2663-68 (1994). https://doi.org/10.1111/j.1151-2916.1994.tb04659.x