DOI QR코드

DOI QR Code

Micro Vibration Measurement in a Latex Sample Mimicking the Tympanic Membrane Using Micro Vibro Tomography

고막을 모방한 라텍스 샘플의 미세진동 측정을 위한 마이크로 바이브로 토모그라피 시스템 개발

  • Kwon, Jaehwan (School of Electronics Engineering, College of IT Engineering, Kyungpook National University) ;
  • Kim, Pilun (Institute of Biomedical Engineering, Kyungpook National University) ;
  • Jeon, Mansik (School of Electronics Engineering, College of IT Engineering, Kyungpook National University) ;
  • Kim, Jeehyun (School of Electronics Engineering, College of IT Engineering, Kyungpook National University)
  • 권재환 (경북대학교 IT대학 전자공학부) ;
  • 김필운 (경북대학교 의공학연구소) ;
  • 전만식 (경북대학교 IT대학 전자공학부) ;
  • 김지현 (경북대학교 IT대학 전자공학부)
  • Received : 2018.09.12
  • Accepted : 2018.12.20
  • Published : 2019.01.31

Abstract

In this paper, we propose a micro vibro tomography(MVT) method, that can be used to visualize two-dimensional cross-sectional images and micro-vibration tomographic images in real time in a non-contact and non-destructive manner. The proposed method is based on the optical coherence tomography(OCT) technique, with an additionally customized image processing algorithm. The proposed method can detect the micro-motions or vibrations in sample structures by measuring the phase shift variations in the sample structures. In this study, we show the potential capabilities of the proposed MVT system for measuring the micro-vibrations generated when sound waves in a frequency range of 2~5 kHz are applied to an $80-{\mu}m$ thick latex phantom, which mimics the changes in physical structure of the human tympanic membrane while hearing. Additionally, three-dimensional volumetric images of the MVT method were recorded to observe the surface morphological changes in the surface of the phantom sample which mimics the human tympanic membrane while hearing.

Keywords

Micro Vibration Measurement;Optical Coherence Tomography;Optical Vibrometry;Tympanic Membrane Vibration

JJPHCH_2019_v30n1_23_f0001.png 이미지

그림 1. 고막 모방 샘플 셋업 모식도 Fig. 1. Tympanic membrane mimic sample setup schematic.

JJPHCH_2019_v30n1_23_f0002.png 이미지

그림 2. MVT 하드웨어 모식도 Fig. 2. MVT hardware schematic.

JJPHCH_2019_v30n1_23_f0003.png 이미지

그림 3. MVT 소프트웨어 알고리즘 구성도 Fig. 3. MVT software algorithm diagram.

JJPHCH_2019_v30n1_23_f0004.png 이미지

그림 4. 고막 모방 샘플의 MVT 이미지 Fig. 4. MVT images of tympanic membrane mimic sample.

JJPHCH_2019_v30n1_23_f0005.png 이미지

그림 5. 각각의 음파에 의해 진동되는 고막 모방 샘플의 MVT 표면 진동 이미지 Fig. 5. MVT surface vibration images of tympanic membrane mimic sample vibrated by each sound waves, respec-tively.

Acknowledgement

Supported by : 교육부, 한국연구재단

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, and W. Chang, et al., "Optical coherence tomography," Science, vol. 254, no. 5035, pp. 1178-1181, Nov. 1991. https://doi.org/10.1126/science.1957169
  2. N. H. Cho, U. S. Jung, H. I. Kwon, H. S. Jeong, and J. H. Kim, "Development of SD-OCT for imaging the in vivo human tympanic membrane," Journal of the Optical Society of Korea, vol. 15, no. 1, pp. 74-77, 2011. https://doi.org/10.3807/JOSK.2011.15.1.074
  3. C. T. Nguyen, W. Jung, J. Kim, E. J. Chaney, M. Novak, and S. A. Boppart, "Noninvasive in vivo optical detection of biofilm in the human middle ear," in Proceedings of the National Academy of Sciences, 2012, vol. 109, no. 24, pp. 9529-9534. https://doi.org/10.1073/pnas.1201592109
  4. N. H. Cho, J. H. Jang, W. Jung, and J. Kim, "In vivo imaging of middle-ear and inner-ear microstructures of a mouse guided by SD-OCT combined with a surgical microscope," Optics Express, vol. 22, no. 8, pp. 8985-8995, 2014. https://doi.org/10.1364/OE.22.008985
  5. 백인찬, 이상일, 유경주, 장종훈, "간섭계 레이더 고도계용 시뮬레이터 구현," 한국전자파학회논문지, 26(1), pp. 81-87, 2015년 1월.
  6. 이재환, "광 지연선을 이용한 FMCW 전파고도계 시뮬레이터 개발," 한국전자파학회논문지, 28(3), pp. 208-216, 2017년 3월. https://doi.org/10.5515/KJKIEES.2017.28.3.208
  7. V. X. D. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, and R. S. Cobbold, et al., "Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation," Optics Communications, vol. 208, no. 4-6, pp. 209-214, Jul. 2002. https://doi.org/10.1016/S0030-4018(02)01501-8
  8. V. X. D. Yang, M. L. Gordon, B. Qi, J. Pekar, S. Lo, and S. Y. Emily, et al, "High speed, wide velocity dynamic range Doppler optical coherence tomography(Part I): System design, signal processing, and performance," Optics Express, vol. 11, no. 7, pp. 794-809, 2003. https://doi.org/10.1364/OE.11.000794