DOI QR코드

DOI QR Code

A Study on Fingerprint-Based Coil Alignment Improvement Technique for Magnetic Resonant Wireless Power Transfer System

핑거프린트 방식의 자기 공진형 무선전력전송 코일 정렬 상태 개선 기법 연구

  • Kim, Sungjae (Department of Electronics, Information and Communication Engineering, Konkuk University) ;
  • Lee, Euibum (Department of Electronics, Information and Communication Engineering, Konkuk University) ;
  • Ku, Hyunchul (Department of Electronics, Information and Communication Engineering, Konkuk University)
  • 김성재 (건국대학교 전자정보통신공학과) ;
  • 이의범 (건국대학교 전자정보통신공학과) ;
  • 구현철 (건국대학교 전자정보통신공학과)
  • Received : 2018.11.19
  • Accepted : 2019.01.18
  • Published : 2019.01.31

Abstract

This paper proposes fingerprint-based positioning methods which can be used in a magnetic resonant wireless power transfer(WPT) system and verifies their performance. A new receiver coil with small orthogonal auxiliary coils is proposed to measure magnetic field signals in three axial directions. The magnitude and phase characteristics of the three-axis electromotive force can be obtained by using the proposed coil. To predict a position with the measured values, we propose a lookup table-based method and linear discriminant analysis-based method. For verification, the proposed methods are applied to predict 75 positions of the 6.78 MHz WPT system, and the performances such as accuracy and computation time are compared.

Keywords

Positioning Method;Machine Learning;Wireless Power Transfer;Time-Varying Magnetic Field

JJPHCH_2019_v30n1_38_f0001.png 이미지

그림 1. 제안하는 수신 코일의 형태 Fig. 1. The configuration of the proposing Rx coil.

JJPHCH_2019_v30n1_38_f0002.png 이미지

그림 2. 제안하는 시스템의 회로도 Fig. 2. Schematic of the proposing system.

JJPHCH_2019_v30n1_38_f0003.png 이미지

그림 3. 제안한 코일에서 측정된 3축 기전력 Fig. 3. Measured 3-axis electromotive force in the proposed coil.

JJPHCH_2019_v30n1_38_f0004.png 이미지

그림 4. 측위 과정 예시 (LUT 기반) Fig. 4. Example of positioning process (LUT based).

JJPHCH_2019_v30n1_38_f0005.png 이미지

그림 5. 제안하는 측위 진행도 Fig. 5. The progress of the proposed positioning methods.

JJPHCH_2019_v30n1_38_f0006.png 이미지

그림 6. 제작한 송신 코일과 수신 코일 Fig. 6. Fabricated Tx coil and Rx coil.

JJPHCH_2019_v30n1_38_f0007.png 이미지

그림 7. 실험 환경 Fig. 7. Experimental environment.

JJPHCH_2019_v30n1_38_f0008.png 이미지

그림 8. 코일 타입별 파라미터 Fig. 8. The parameters of each coil type.

JJPHCH_2019_v30n1_38_f0009.png 이미지

그림 9. 각 요소별 측정 결과 Fig. 9. The measurement results of each attribute.

JJPHCH_2019_v30n1_38_f0010.png 이미지

그림 10. 측위 결과에 따른 오차 분포 Fig. 10. Error distribution according to positioning result.

표 1. 각 코일별 정보 Table 1. Specification of each coil.

JJPHCH_2019_v30n1_38_t0001.png 이미지

표 2. 제안 기법의 정확도와 처리 속도 Table 2. Accuracy and processing time of the proposed me-thods.

JJPHCH_2019_v30n1_38_t0002.png 이미지

Acknowledgement

Supported by : 한국연구재단, 건국대학교

References

  1. X. Lu, P. Wang, D. Niyato, D. I. Kim, and Z. Han, "Wireless charging technologies: Fundamentals, standards, and network applications," IEEE Communications Surveys & Tutorials, vol. 18, no. 2, pp. 1413-1452, 2016. https://doi.org/10.1109/COMST.2015.2499783
  2. W. Li, P. Wang, C. Yao, Y. Zhang, and H. Tang, "Experimental investigation of 1D, 2D, and 3D metamaterials for efficiency enhancement in a 6.78 MHz wireless power transfer system," in 2016 IEEE Wireless Power Transfer Conference(WPTC), Aveiro, 2016, pp. 1-4.
  3. H. Lim, K. Ishida, M. Takamiya, and T. Sakurai, "Positioning-free magnetically resonant wireless power transmission board with staggered repeater coil array(SRCA)," in 2012 IEEE MTT-S International Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications, Kyoto, 2012, pp. 93-96.
  4. D. Kim, J. Kim, and Y. Park, "Free-positioning wireless power transfer using multiple coupling coils in a transmitter," in 2015 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), Turin, 2015, pp. 1381-1384.
  5. H. Liu, H. Darabi, P. Banerjee, and J. Liu, "Survey of wireless indoor positioning techniques and systems," IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), Nov. 2007, vol. 37, no. 6, pp. 1067-1080. https://doi.org/10.1109/TSMCC.2007.905750
  6. E. Bejar, A. Moran, "Deep reinforcement learning based neuro-control for a two-dimensional magnetic positioning system," in 2018 4th International Conference on Control, Automation and Robotics(ICCAR), Auckland, 2018, pp. 268-273.
  7. S. B. Keser, A. Yazici, and S. Gunal, "A hybrid fingerprint based indoor positioning with extreme learning machine," in 2017 25th Signal Processing and Communications Applications Conference(SIU), Antalya, 2017, pp. 1-4.
  8. 유제훈, 심귀보, "아두이노와 emotiv epoc을 이용한 정상상태시각유발전위(SSVEP) 기반의 로봇제어," 한국지능시스템학회논문지, 25(3), pp. 254-259, 2015년. https://doi.org/10.5391/JKIIS.2015.25.3.254
  9. T. Xiong, V. Cherkassky, "A combined SVM and LDA approach for classification," in Proceedings 2005 IEEE International Joint Conference on Neural Networks, Montreal, 2005, vol. 3, pp. 1455-1459.