DOI QR코드

DOI QR Code

Performance Comparison of 28 GHz Array Antennas for 5G Mobile Devices

5G 단말용 28 GHz 배열안테나의 안테나 타입별 성능 비교 연구

  • Kim, Sun-Ryul (Department of Electronics and Computer Engineering, Hanyang University) ;
  • Hong, Young-Taek (Department of Electronics and Computer Engineering, Hanyang University) ;
  • Bang, Ji-Hoon (Department of Electronics and Computer Engineering, Hanyang University) ;
  • Choi, Jae-Hoon (Department of Electronics and Computer Engineering, Hanyang University)
  • 김선률 (한양대학교 전자컴퓨터통신공학과) ;
  • 홍영택 (한양대학교 전자컴퓨터통신공학과) ;
  • 방지훈 (한양대학교 전자컴퓨터통신공학과) ;
  • 최재훈 (한양대학교 전자컴퓨터통신공학과)
  • Received : 2018.11.09
  • Accepted : 2019.01.11
  • Published : 2019.01.31

Abstract

In this paper, three types of array antennas for 5G mobile devices operating at 28 GHz were designed, and their performances were compared. The isolation between antenna elements was compared based on $S_{21}$. The $S_{21}$ of dipole, slot, and patch type are -13.76 dB, -16.88 dB, and -11.47 dB, respectively, with the slot-type antenna having the highest isolation. In order to compare the beam coverage performance, several characteristics such as beam width and maximum beam steering angle were analyzed. The analysis shows that the slot type has the widest steering angle of $63^{\circ}$ while the patch type has narrowest with $36^{\circ}$. In addition, to verify the performance of the antennas in the actual usage environment of the device, antenna characteristics in talk mode and data mode were analyzed through simulation. The results confirmed that the slot-type array antenna is the most suitable array antenna element for 28 GHz 5G mobile devices.

Keywords

mmWave;5G Device;Beam Steering;Beam Coverage

JJPHCH_2019_v30n1_45_f0001.png 이미지

그림 1. 28 GHz 5G 단말용 배열안테나를 위한 세 가지 형태의 안테나 소자의 기본 구조 Fig. 1. Basic structure of three types of antenna elements for array antennas for 28 GHz 5G mobile devices.

JJPHCH_2019_v30n1_45_f0002.png 이미지

그림 2. 다이폴, 슬롯, 패치 단일안테나의 반사손실 Fig. 2. Return loss of dipole, slot and patch antenna.

JJPHCH_2019_v30n1_45_f0003.png 이미지

그림 3. 단일안테나의 방사패턴 Fig. 3. Radiation pattern of single antenna.

JJPHCH_2019_v30n1_45_f0004.png 이미지

그림 4. 28 GHz 5G 단말용 배열안테나의 구조 Fig. 4. Design of array antennas for 28 GHz 5G mobile de-vices.

JJPHCH_2019_v30n1_45_f0005.png 이미지

그림 5. 다이폴, 슬롯, 패치 배열안테나의 S21, S31, S41 Fig. 5. S21, S31 and S41 of dipole, slot amd patch array antennas.

JJPHCH_2019_v30n1_45_f0006.png 이미지

그림 6. 배열안테나의 방사패턴 Fig. 6. Radiation pattern of array antenna.

JJPHCH_2019_v30n1_45_f0007.png 이미지

그림 7. 자유공간에서 배열안테나의 빔 조향 성능 Fig. 7. Beam steering performance of array antenna in freespace.

JJPHCH_2019_v30n1_45_f0008.png 이미지

그림 8. 머리와 손 팬텀을 이용한 시뮬레이션 환경 Fig. 8. Simulation environment using head and hand phan-tom.

JJPHCH_2019_v30n1_45_f0009.png 이미지

그림 9. 제작한 슬롯 배열안테나 Fig. 9. Manufactured slot array antenna.

JJPHCH_2019_v30n1_45_f0010.png 이미지

그림 11. 제작한 슬롯 배열안테나(0°)의 yz평면에서 방사 패턴 Fig. 11. Radiation pattern in yz plane of manufactured slot array antenna(0°).

JJPHCH_2019_v30n1_45_f0011.png 이미지

그림 10. 조향 각도(θ °)에 따른 제작한 슬롯 배열안테나 의 반사손실 Fig. 10. Return loss of manufactured slot array antenna.

JJPHCH_2019_v30n1_45_f0012.png 이미지

그림 12. 제작한 슬롯 배열안테나(0°, 30°)의 xz평면에서 방사패턴 Fig. 12. Radiation pattern in xz plane of manufactured slot array antenna(0°, 30°).

표 1. 다이폴, 슬롯, 패치 단일안테나의 특성 Table 1. Characteristics of dipole, slot and patch antennas.

JJPHCH_2019_v30n1_45_t0001.png 이미지

표 2. 다이폴, 슬롯, 패치 배열안테나의 성능 Table 2. Performance of dipole, slot, patch array antenna.

JJPHCH_2019_v30n1_45_t0002.png 이미지

표 3. Talk mode에서 다이폴, 슬롯, 패치 배열안테나의 특성 Table 3. Characteristics of dipole, slot, patch array antenna in talk mode.

JJPHCH_2019_v30n1_45_t0003.png 이미지

표 4. Data mode에서 다이폴, 슬롯, 패치 배열안테나의 특성 Table 4. Characteristics of dipole, slot, patch array antenna in data mode.

JJPHCH_2019_v30n1_45_t0004.png 이미지

Acknowledgement

Grant : 밀리미터파 대역 5G 단말용 배열안테나의 병목기술 해결을 위한 기초 연구

Supported by : 정보통신기술진흥센터

References

  1. H. Xia, T. Zhang, L. Li, and F. Zheng, "A low-cost dual-polarized 28 GHz phased array antenna for 5G communications," in 2018 International Workshop on Antenna Technology(iWAT), Nanjing, 2018, pp. 1-4.
  2. N. Ojaroudiparchin, M. Shen, and G. F. Pedersen, "Design of Vivaldi antenna array with end-fire beam steering function for 5G mobile terminals," in 2015 23rd Telecommunications Forum Telfor(TELFOR), Belgrade, 2015, pp. 587-590.
  3. Samsung Electronics, Who & How: Making 5G NR Standards, pp. 3-7, 2018.
  4. K. Zhao, J. Helander, D. Sjoberg, S. He, T. Bolin, and Z. Ying, "User body effect on phased array in user equipment for the 5G mmWave communication system," IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 864-867, 2017. https://doi.org/10.1109/LAWP.2016.2611674
  5. W. Hong, K. Baek, Y. Lee, Y. Kim, and S. Ko, "Study and prototyping of practically large-scale mmWave antenna systems for 5G cellular devices," IEEE Communications Magazine, vol. 52, no. 9, pp. 63-69, Sep. 2014. https://doi.org/10.1109/MCOM.2014.6894454
  6. ANSYS. ANSYS HFSS, V18. Available: https://www.ansys.com/products/electronics/ansys-hfss.
  7. Computer Simulation Technology. CST Microwave Studio, ver. 2017. Available: https://www.cst.com/2017.
  8. N. O. Parchin, M. Shen, and G. F. Pedersen, "UWB MMWave antenna array with quasi omnidirectional beams for 5G handheld devices," in 2016 IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB), Nanjing, 2016, pp. 1-4.
  9. J. Bang, J. Choi, "A SAR reduced mm-wave beam-steerable array antenna with dual-mode operation for fully metal-covered 5G cellular handsets," IEEE Antennas and Wireless Propagation Letters, vol. 17, no. 6, pp. 1118-1122, Jun. 2018. https://doi.org/10.1109/LAWP.2018.2836196
  10. N. O. Parchin, M. Shen, and G. F. Pedersen, "End-fire phased array 5G antenna design using leaf-shaped bowtie elements for 28/38 GHz MIMO applications," in 2016 IEEE International Conference on Ubiquitous Wireless Broadband(ICUWB), Nanjing, 2016, pp. 1-4.
  11. M. Stanley, Y. Huang, H. Wang, H. Zhou, A. Alieldin, and S. Joseph, "A capacitive coupled patch antenna array with high gain and wide coverage for 5G smartphone applications," IEEE Access, vol. 6, pp. 41942-41954, 2018. https://doi.org/10.1109/ACCESS.2018.2860795
  12. M. Khalily, R. Tafazolli, T. A. Rahman, and M. R. Kamarudin, "Design of phased arrays of series-fed patch antennas with reduced number of the controllers for 28-GHz mm-Wave applications," IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 1305-1308, 2016. https://doi.org/10.1109/LAWP.2015.2505781