DOI QR코드

DOI QR Code

Seismic Access of Offshore Subsea Manifold using RSA and THA Seismic Analysis Results for Simplified Model

단순화 모델에서의 응답스펙트럼과 시간이력 내진해석 결과를 활용한 해양플랜트용 매니폴드 실제품의 내진강도 평가

  • Lee, Eun-Ho (Industrial Technology(Industrial Materials and Smart Manufacturing Engineering), Korea University of Science and Technology(UST)) ;
  • Kwak, Si-Young (Industrial Technology(Industrial Materials and Smart Manufacturing Engineering), Korea University of Science and Technology(UST))
  • 이은호 (과학기술연합대학원대학교 생산기술전공(산업소재 및 스마트제조공학과)) ;
  • 곽시영 (과학기술연합대학원대학교 생산기술전공(산업소재 및 스마트제조공학과))
  • Received : 2018.10.05
  • Accepted : 2018.11.07
  • Published : 2019.02.28

Abstract

In this paper, for a seismic analysis of an offshore subsea manifold, Response Spectrum Analysis(RSA) and Time History Analysis(THA) were conducted under a various analysis conditions. Response spectrum and seismic design procedure have followed ISO19901-2 code. In case of THA, The response spectrum were converted into artificial earthquake history and both of Explicit and Implicit solvers were used to examine the characteristics of seismic analysis. For the verification, Various seismic analysis methods were applied on a single degree of freedom beam model and a simplified model of the actual manifold. The difference between the results of RSA and THA on the simplified manyfold model evaluated for the analysis of the actual manifold. Because THA is impossible in case of real complex structure such as a manifold, Safety of the actual manifold structure was accessed by using the RSA and the difference between the results of RSA and THA from the simplified model.

Acknowledgement

Grant : 심해유전개발을 위한 500Mpa 급 URF 및 SIL 3 manifold 개발과 subsea 시스템 엔지니어링 기술개발

Supported by : 산업통상자원부

References

  1. Chen, X., Duan, J., Qi, H., Li, Y. (2014) Rayleigh Damping in Abaqus/Explicit Dynamic Analysis, Appli. Mech. & Mater., 627, pp.288-294. https://doi.org/10.4028/www.scientific.net/AMM.627.288
  2. Choi, Y.K., Nam, M.S. (1998) Response of Open-ended Pipe Pile Foundation at Offshore Sites to Seaquake Induced by the Vertical Seismic Excitation of the Seafloor, J. Earthq. Eng. Soc. Korea, 2(1), pp.11-21.
  3. DNV (2011) Comparison of API, ISO, and NORSOK Offshore Structural Standards, Technical Report No.EP034373-2011-01, pp.128-132.
  4. ISO 19901-2 (2004) Petroleum and Natural Gas Industries-Specific Requires for offshore Structures Part 2: Seismic Design Procedures and Criteria
  5. Jeff, C. (2010) Study of Deepwater Currents in the Eastern Gulf of Mexico, OCS Study BOEMRE 2010-041, Regulation and Enforcement Gulf of Mexico OCS Region, U.S Department of the Interior, p.468.
  6. Kim, D.K. (2018) Structural System Laboratory, http://www.kim2kie.com/3_ach/SSL_Software.php, (accessed Oct. 5, 2018)
  7. Kim, D.K., Lee, B.R. (2009) Korean Materials for Earthquake Analyses of Underground Structures, Comput. Struct. Eng., 22(3), pp.41-53.
  8. Kim, J.M., Jeong, U.J., Kim, J.W., Kim, D.A. (2009) Methods for Dynamic Analysis of Underground Structures, Comput. Struct. Eng., 22(3), pp.17-20.
  9. KS B ISO 19901-2 (2010) Petroleum and Natural Gas Industries - Specific Requirements for Offshore Structures - Part 2: Seismic Design Procedures and Criteria, Korea Agency for Technology and Standards.
  10. Lee, J.H., Lee, S.B., Kim, J.K. (2012) Earthquake Response Analysis of an Offshore Wind Turbine Considering Fluid-Structure-Soil Interaction, J. Earthq. Eng. Soc. Korea, 16(3), pp.1-12. https://doi.org/10.5000/EESK.2012.16.3.001