DOI QR코드

DOI QR Code

Genetic diversity of Indonesian cattle breeds based on microsatellite markers

  • Agung, Paskah Partogi (Research Center for Biotechnology-Indonesian Institute of Sciences) ;
  • Saputra, Ferdy (Laboratory of Genetics Indonesia, Cikarang Technopark) ;
  • Zein, Moch Syamsul Arifin (Research Center for Biology-Indonesian Institute of Science) ;
  • Wulandari, Ari Sulistyo (Research Center for Biotechnology-Indonesian Institute of Sciences) ;
  • Putra, Widya Pintaka Bayu (Research Center for Biotechnology-Indonesian Institute of Sciences) ;
  • Said, Syahruddin (Research Center for Biotechnology-Indonesian Institute of Sciences) ;
  • Jakaria, Jakaria (Faculty of Animal Science, Bogor Agricultural University, Darmaga Campus)
  • Received : 2018.04.11
  • Accepted : 2018.07.31
  • Published : 2019.04.01

Abstract

Objective: This research was conducted to study the genetic diversity in several Indonesian cattle breeds using microsatellite markers to classify the Indonesian cattle breeds. Methods: A total of 229 DNA samples from of 10 cattle breeds were used in this study. The polymerase chain reaction process was conducted using 12 labeled primers. The size of allele was generated using the multiplex DNA fragment analysis. The POPGEN and CERVUS programs were used to obtain the observed number of alleles, effective number of alleles, observed heterozygosity value, expected heterozygosity value, allele frequency, genetic differentiation, the global heterozygote deficit among breeds, and the heterozygote deficit within the breed, gene flow, Hardy-Weinberg equilibrium, and polymorphism information content values. The MEGA program was used to generate a dendrogram that illustrates the relationship among cattle population. Bayesian clustering assignments were analyzed using STRUCTURE program. The GENETIX program was used to perform the correspondence factorial analysis (CFA). The GENALEX program was used to perform the principal coordinates analysis (PCoA) and analysis of molecular variance. The principal component analysis (PCA) was performed using adegenet package of R program. Results: A total of 862 alleles were detected in this study. The INRA23 allele 205 is a specific allele candidate for the Sumba Ongole cattle, while the allele 219 is a specific allele candidate for Ongole Grade. This study revealed a very close genetic relationship between the Ongole Grade and Sumba Ongole cattle and between the Madura and Pasundan cattle. The results from the CFA, PCoA, and PCA analysis in this study provide scientific evidence regarding the genetic relationship between Banteng and Bali cattle. According to the genetic relationship, the Pesisir cattle were classified as Bos indicus cattle. Conclusion: All identified alleles in this study were able to classify the cattle population into three clusters i.e. Bos taurus cluster (Simmental Purebred, Simmental Crossbred, and Holstein Friesian cattle); Bos indicus cluster (Sumba Ongole, Ongole Grade, Madura, Pasundan, and Pesisir cattle); and Bos javanicus cluster (Banteng and Bali cattle).

Keywords

Genetic Diversity;Indonesian;Cattle Breed;Microsatellite

Acknowledgement

Supported by : Indonesian Institute of Sciences

References

  1. Sutarno, Setyawan AD. Review: Genetic diversity of local and exotic cattle and their crossbreeding impact on the quality of Indonesian cattle. Biodiversitas 2015;16:327-54.
  2. MARI (Ministry of Agriculture Republic Indonesia). Directorate of animal breeding and production [cited 2018 June 12]. Available from: http://bibit.ditjenpkh.pertanian.go.id/jenisrumpun/sapi
  3. Said S, Putra WPB, Anwar S, Agung PP, Yuhani H. Phenotypic, morphometric characterization and population structure of Pasundan cattle at West Java, Indonesia. Biodiversitas 2017;18:1638-45.
  4. Bennett P. Microsatellites. J Clin Pathol Mol Pathol 2000;53:177-83. https://doi.org/10.1136/mp.53.4.177
  5. Rehman MS, Khan MS. Genetic diversity of Hariana and Hissar cattle from Pakistan using microsatellite analysis. Pakistan Vet J 2009;29:67-71.
  6. Maretto F, Ramljak J, Sbarra F, et al. Genetic relationships among Italian and Croatian Podolian cattle breeds assessed by microsatellite markers. Livest Sci 2012;150:256-64. https://doi.org/10.1016/j.livsci.2012.09.011
  7. Stevanovic J, Stanimirovic Z, Dimitrijevic V, Maletic M. Evaluation of 11 microsatellite loci for their use in paternity testing in Yugoslav Pied cattle (YU Simmental cattle). Czech J Anim Sci 2010;55:221-6. https://doi.org/10.17221/183/2009-CJAS
  8. Seo JH, Lee JH, Kong HS. Assessment of genetic diversity and phylogenetic relationships of Korean native chicken breeds using microsatellite markers. Asian-Australas J Anim Sci 2017;30:1365-71. https://doi.org/10.5713/ajas.16.0514
  9. Agung PP, Anwar S, Wulandari AS, et al. The potency of Sumba Ongole (SO) cattle: a study of genetic characterization and carcass productivity. J Indonesian Trop Anim Agric 2015;40:71-8.
  10. Glaubitz JC. Convert: a user-friendly program to reformat diploid genotypic data for commonly used population genetic software packages. Mol Ecol Notes 2004;4:309-10. https://doi.org/10.1111/j.1471-8286.2004.00597.x
  11. Yeh FC, Boyle TJB. Population genetic analysis of co-dominant and dominant markers and quantitative traits. Belg J Bot 1997;129:157-63.
  12. Kalinowski ST, Taper ML, Marshall TC. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 2007;16:1099-106. https://doi.org/10.1111/j.1365-294X.2007.03089.x
  13. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725-9. https://doi.org/10.1093/molbev/mst197
  14. Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics 2000;155:945-59.
  15. Earl DA, vonHoldt BM. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genet Resour 2012;4:359-61. https://doi.org/10.1007/s12686-011-9548-7
  16. Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 2005;14:2611-20. https://doi.org/10.1111/j.1365-294X.2005.02553.x
  17. Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F. Montpellier, France: Universite de Montpellier II [cited 2017 Oct 14]. GENETIX 4.05, Logiciel sous Windows TM pour la genetique des populations. Laboratoire Genome, Populations, Interactions, CNRS UMR 5171. Available from: http://kimura.univmontp2.fr/genetix
  18. Peakall R, Smouse PE. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics. 2012;28:2537-9. https://doi.org/10.1093/bioinformatics/bts460
  19. Jombart T. Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 2008;24:1403-5. https://doi.org/10.1093/bioinformatics/btn129
  20. R Development Core Team. R: A language and environment for statistical computing [cited 2017 Aug 28]. Available from: http://www.R-project.org
  21. Weir BS, Cockerham CC. Estimating F-statistics for the analysis of population structure. Evolution 1984;38:1358-70.
  22. Nei M, Kumar S. Molecular evolution and phylogenetics. New York, USA: Oxford University Press Inc.; 2000.
  23. Sutarno, Setyawan AD, Lymbery AJ. Genetic diversity of five indonesian native cattle breeds at microsatellite loci. Asian J Anim Sci 2015;9:57-64. https://doi.org/10.3923/ajas.2015.57.64
  24. Selkoe KA, Toonen RJ. Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol Lett 2006;9:615-29. https://doi.org/10.1111/j.1461-0248.2006.00889.x
  25. Cervini M, Henrique-Silva F, Mortari N, Matheucci Jr. E. Genetic variability of 10 microsatellite markers in the characterization of Brazilian Nellore cattle (Bos indicus). Genet Mol Biol 2006;29:486-90. https://doi.org/10.1590/S1415-47572006000300015
  26. Czernekova V, Kott T, Dudkova G, Sztankoova Z, Soldat J. Genetic diversity between seven central European cattle breeds as revealed by microsatellite analysis. Czech J Anim Sci 2006;51:1-7.
  27. Botstein D, White RL, Skolnick M, Davis RW. Construction of genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 1980;32:314-31.
  28. Berthouly C, Bed'Hom B, Tixier-Boichard M, et al. Using molecular markers and multivariate methods to study the genetic diversity of local European and Asian chicken breeds. Anim Genet 2008;39:121-9. https://doi.org/10.1111/j.1365-2052.2008.01703.x
  29. Agung PP, Ridwan M, Handrie, et al. Morphological profile and estimation of genetic distance of Simmental crossbred. Jurnal Ilmu Ternak dan Veteriner 2014;19:112-22 (in Indonesian with English abstract).
  30. Agung PP, Saputra F, Septian WA, et al. Study of genetic diversity among Simmental cross cattle in West Sumatra based on microsatellite markers. Asian-Australas J Anim Sci 2016;29:176-83.
  31. Suyadi S, Hakim L, Wahjuningsih S, Nugroho H. Reproductive performance of Peranakan Ongole (PO)-and Limousin x PO Crossbred (Limpo) cattle at different altitude areas in East Java, Indonesia. J Appl Sci Agric 2014;9:81-5.
  32. Nijman IJ, Otsen M, Verkaar ELC, et al. Hybridization of banteng (Bos javanicus) and zebu (Bos indicus) revealed by mitochondrial DNA, satellite DNA, AFLP and microsatellites. Heredity 2003;90:10-6. https://doi.org/10.1038/sj.hdy.6800174
  33. Rutledge LY, Garroway CJ, Loveless KM, Patterson BR. Genetic differentiation of eastern wolves in Algonquin Park despite bridging gene flow between coyotes and grey wolves. Heredity 2010;105:520-31. https://doi.org/10.1038/hdy.2010.6
  34. Radko A, Zyga A, Zabek T, Slota E. Genetic variability among Polish Red, Hereford and Holstein-Friesian cattle raised in Poland based on analysis of microsatellite DNA sequences. J Appl Genet 2005;46:89-91.
  35. Zhou GL, Jin HG, Zhu Q, Guo SL, Wu YH. Genetic diversity analysis of five cattle breeds native to China using microsatellites. J Genet 2005;84:77-80. https://doi.org/10.1007/BF02715894
  36. Martojo H. Indigenous Bali cattle is most suitable for sustainable small farming in Indonesia. Reprod Domest Anim 2012;47:10-4. https://doi.org/10.1111/j.1439-0531.2011.01958.x
  37. Mohamad K, Olsson M, van Tol HTA, et al. On the origin of Indonesian cattle. PLoS ONE 2009;4:e5490. https://doi.org/10.1371/journal.pone.0005490
  38. Widi TSM, Udo HMJ, Oldenbroek K, et al. Unique cultural values of Madura cattle: is cross-breeding a threat? Anim Genet Resour 2014;54:141-52. https://doi.org/10.1017/S2078633613000349
  39. Hilmia N, Noor RR, Sumantri C, Gurnadi RE, Priyanto R. Productivity and genetic diversity of local cattle in Ciamis-West Java. J Indonesian Trop Anim Agric 2013;38:10-9.
  40. Fitzpatrick BM. Power and sample size for nested analysis of molecular variance. Mol Ecol 2009;18:3961-6. https://doi.org/10.1111/j.1365-294X.2009.04314.x