DOI QR코드

DOI QR Code

Application of Electron Energy Loss Spectroscopy - Spectrum Imaging (EELS-SI) for Microbe-mineral Interaction

생지구화학적 광물변이작용 연구에서 전자에너지 손실 분광 분석 - 스펙트럼 영상법의 활용

  • Yang, Kiho (Department of Earth System Sciences, Yonsei University) ;
  • Park, Hanbeom (Department of Earth System Sciences, Yonsei University) ;
  • Kim, Jinwook (Department of Earth System Sciences, Yonsei University)
  • 양기호 (연세대학교 지구시스템과학과) ;
  • 박한범 (연세대학교 지구시스템과학과) ;
  • 김진욱 (연세대학교 지구시스템과학과)
  • Received : 2019.01.16
  • Accepted : 2019.03.07
  • Published : 2019.03.31

Abstract

The oxidation states of structural Fe in minerals reflect the paleo-depositional redox conditions for the biologically or abiotically induced mineral formation. Particularly, nano-scale analysis using high-resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS) is necessary to identify evidence for the microbial role in the biomineralization. HRTEM-EELS analysis of oxidation states of structural Fe and carbon bonding structure differentiate biological factors in mineralization by mapping the distribution of Fe(II)/Fe(III) and source of organic C. HRTEM-EELS technique provides geomicrobiologists with the direct nano-scale evidence of microbe-mineral interaction.

광물 구조에 분포하는 철의 산화수 정보는 유 무기적 퇴적광물형성 시 산화환원 조건 등 과거 퇴적 환경에 대한 정보를 제공한다. 특히, 생광물화작용에서 미생물의 역할을 규명하기 위해서는 고분해능 투과 전자현미경(HRTEM) 및 전자에너지 손실 분광기(EELS)를 활용한 나노스케일 분석이 필요하다. HRTEM-EELS를 이용한 광물구조 내 철의 산화수 및 탄소 결합 구조 분석, Fe(II)/Fe(III) 및 탄소 기원 분포영상으로부터 광물생성의 생물학적 요소를 판별할 수 있다. 이와 같은 나노스케일 분석을 통하여 지질미생물학자들은 미생물-광물작용의 증거를 직접적으로 얻을 수 있다.

Keywords

References

  1. Bayle-Guillemaud, P., Radtke, G., and Sennour, M. (2003) Electron spectroscopy imaging to study ELNES at a nanoscale. Journal of Microscopy, 210, 66-73. https://doi.org/10.1046/j.1365-2818.2003.01179.x
  2. Garvie, L.A.J. and Craven, A.J. (1994) High-resolution parallel electron energy-loss spectroscopy of Mn $L_{2,3}$-edges in inorganic manganese compounds. Physics and Chemistry of Minerals, 21, 191-206. https://doi.org/10.1007/BF00202132
  3. Halbach, P. and Puteanus, D. (1984) The influence of the carbonate dissolution rate on the growth and composition of Co-rich ferromanganese crusts from Central Pacific seamount areas. Earth and Planetary Science Letters, 68, 73-87. https://doi.org/10.1016/0012-821X(84)90141-9
  4. Hein, J.R. and Morgan, C.L. (1999) Influence of substrate rocks on Fe-Mn crust composition. Deep Sea Research Part I: Oceanographic Research Papers, 46, 855-875. https://doi.org/10.1016/S0967-0637(98)00097-1
  5. Huo, Y., Cheng, H., Post, A.F., Wang, C., Jiang, X., Pan, J., Wu, M., and Xu, X. (2015) Ecological functions of uncultured microorganisms in the cobalt-rich ferromanganese crust of a seamount in the central Pacific are elucidated by fosmid sequencing. Acta Oceanologica Sinica, 34, 92.
  6. Kim, J., Bryant, W., Watkins, J., and Tieh, T. (1998) Electron microscopic observations of shale diagenesis, offshore Louisiana, USA, Gulf of Mexico. Geo-Marine Letters, 18, 234-240. https://doi.org/10.1007/s003670050073
  7. Kim, J. and Dong, H. (2011) Application of electron energy-loss spectroscopy (EELS) and energy-filtered transmission electron microscopy (EFTEM) to the study of mineral transformation associated with microbial Fe-reduction of magnetite. Clays and Clay Minerals, 59, 176-188. https://doi.org/10.1346/CCMN.2011.0590206
  8. Kim, J., Kogure, T., Yang, K., Kim, S.T., Jang, Y.N., Baik, H.S., and Geesey, G. (2012) The characterization of CaCO3 in a geothermal environment: A SEM/TEM-EELS study. Clays and Clay Minerals, 60, 484-495. https://doi.org/10.1346/CCMN.2012.0600505
  9. Kim, G., Park, J., Shin, K., and Lee, H. (2013) Application of Transmission Electron Microscopy. Chungmungak, Paju, 425p (in Korean).
  10. Liao, L., Xu, X.W., Jiang, X.W., Wang, C.S., Zhang, D.S., Ni, J.Y., and Wu, M. (2011) Microbial diversity in deep-sea sediment from the cobalt-rich crust deposit region in the Pacific Ocean. FEMS Microbiology Ecology, 78, 565-585. https://doi.org/10.1111/j.1574-6941.2011.01186.x
  11. Van Aken, P., Liebscher, B., and Styrsa, V. (1998) Quantitative determination of iron oxidation states in minerals using Fe $L_{2,3}$-edge electron energy-loss near-edge structure spectroscopy. Physics and Chemistry of Minerals, 25, 323-327. https://doi.org/10.1007/s002690050122
  12. Yang, K. and Kim, J. (2012) Quantitative determination of Fe-oxidation state by electron energy loss spectroscopy (EELS). Economic and Environmental Geology, 45, 189-194. https://doi.org/10.9719/EEG.2012.45.2.189
  13. Yang, K. and Kim, J. (2016) Electron energy loss spectroscopy (EELS) application to mineral formation. Journal of the Mineralogical Society of Korea, 29, 73-78 (in Korean with English abstract). https://doi.org/10.9727/jmsk.2016.29.2.73
  14. Yang, K., Kim, J., Kogure, T., Dong, H., Baik, H., Hoppie, B., and Harris, R. (2016) Smectite, illite, and early diagenesis in South Pacific Gyre subseafloor sediment. Applied Clay Science, 134, 34-43. https://doi.org/10.1016/j.clay.2016.03.041
  15. Yang, K., Park, H., Baik, H., Kogure, T., and Kim, J. (2018) The formation of Fe-bearing secondary phase minerals from the basalt-sediment interface, South Pacific gyre: IODP expedition 329. Clays and Clay Minerals, 66, 1-8. https://doi.org/10.1346/CCMN.2018.064083
  16. Yang, K., Park, H., Son, S.K., Baik, H., Park, K., Kim, J., Yoon, J., Park, C.H., and Kim, J. (2019) Electron microscopy study on the formation of ferromanganese crusts, western Pacific Magellan Seamounts. Marine Geology (Online Published).