DOI QR코드

DOI QR Code

VIIRS DNB 영상의 달빛 영향 보정 및 변화 탐지

Correction of Lunar Irradiation Effect and Change Detection Using Suomi-NPP Data

  • 이보람 (세종대학교 지구정보공학과) ;
  • 이윤경 (세종대학교 에너지자원공학과) ;
  • 김동한 (세종대학교 지구정보공학과) ;
  • 김상완 (세종대학교 에너지자원공학과)
  • Lee, Boram (Department of Geoinformation Engineering, Sejong University) ;
  • Lee, Yoon-Kyung (Department of Energy Resources Engineering, Sejong University) ;
  • Kim, Donghan (Department of Geoinformation Engineering, Sejong University) ;
  • Kim, Sang-Wan (Department of Energy Resources Engineering, Sejong University)
  • 투고 : 2019.03.13
  • 심사 : 2019.03.21
  • 발행 : 2019.04.30

초록

Visible Infrared Imaging Radiometer Suite(VIIRS) 센서의 Day and Night Band(DNB) 영상은 야간에 발생하는 인공 및 자연재해 탐지를 통해 신속한 대응을 가능하게 한다. 해양위성센터에서 배포되는 DNB 자료는 달빛의 영향이 보정되지 않았지만 직수신이 가능하기 때문에 빠른 변화탐지에 용이하다. 본 연구에서는 해양위성센터에서 직수신하는 DNB 영상을 사용하여 한반도 도심지 및 산간지에 대하여 달의 위상에 따른 밝기값의 차이를 분석하고, 변화탐지를 위한 달빛 보정 알고리즘을 제안하였다. 기준 영상과 입력 영상에서 토지피복 분류를 고려하여 선택된 화소들 간의 회귀분석을 통한 상대적 보정을 수행하였다. 일일 차분 영상 분석 결과 도심지에서 밝기값 변화는 ${\pm}30$ 라디언스이고, 산간지역은 ${\pm}1$ 라디언스 이하이다. 시계열 자료를 이용한 변화 탐지는 영상간의 좌표 정합오차를 줄이기 위해 시계열 평균 영상을 기반으로 주요 관심 객체를 추출한 후 객체별 변화탐지를 수행하였다. 산간지역에서 발생하는 밝기 변화가 효과적으로 탐지되었으며, 개발된 기술은 실시간 변화 탐지에 활용될 수 있음을 보였다.

OGCSBN_2019_v35n2_265_f0001.png 이미지

Fig. 1. Flowchart of lunar correction method.

OGCSBN_2019_v35n2_265_f0002.png 이미지

Fig. 2. Scatterplot between new moon and full moon for each land cover class such as forest, urban, water, agriculture.

OGCSBN_2019_v35n2_265_f0003.png 이미지

Fig. 3. Example of forest pixel: (a) SDR image acquired on Nov. 18, 2017 at new moon, (b) Nov. 4, 2017 at full moon, (c) Euclidean distance of land cover type with respect to center pixel, (d) distribution of land cover class in test area, (e), scatterplot of the values in (a) and (b).

OGCSBN_2019_v35n2_265_f0004.png 이미지

Fig. 4. Example of urban pixel: (a) SDR image acquired on Nov. 18, 2017 at new moon, (b) Nov. 4, 2017 at full moon, (c) Euclidean distance of land cover type with respect to center pixel, (d) distribution of land cover class in test area, (e), scatterplot of the values in (a) and (b).

OGCSBN_2019_v35n2_265_f0005.png 이미지

Fig. 8. Color composites of DNB images.

OGCSBN_2019_v35n2_265_f0006.png 이미지

Fig. 9. DNB images in different lunar phases after relative correction.

OGCSBN_2019_v35n2_265_f0007.png 이미지

Fig. 10. Objects and local maximum points for change detection.

OGCSBN_2019_v35n2_265_f0008.png 이미지

Fig. 11. Change detection using time series data at T1, T2, T3 and T4 area.

OGCSBN_2019_v35n2_265_f0009.png 이미지

Fig. 12. Change detection with threshold of 10 at the slope in High1 resort (T4).

OGCSBN_2019_v35n2_265_f0010.png 이미지

Fig. 13. Checkerboard plot showing the results of change detection using each time series data (first row: only one data, last row: all the data of time series).

OGCSBN_2019_v35n2_265_f0011.png 이미지

Fig. 5. (a) SDR image acquired on Nov. 18, 2017 during the new moon on (b) SDR image acquired on Nov. 4, 2017 during the full moon, (c) Corrected SDR image of Nov. 4, 2017.

OGCSBN_2019_v35n2_265_f0012.png 이미지

Fig. 6. (a) Box plot of the daily SDR value in the mountain area, (b) Box plot of the daily SDR value after calibration of lunar irradiation effect in the mountain area, (c) Box plot of the daily SDR value in the urban area, (d) Box plot of the daily SDR value after calibration of lunar irradiation effect in the urban area.

OGCSBN_2019_v35n2_265_f0013.png 이미지

Fig. 7. (a) Mean and standard deviation of the daily difference in the mountain area, (b) Mean and standard deviation of the daily difference after calibration of lunar irradiation effect in the mountain area, (c) Mean and standard deviation of the daily difference in the urban area, (d) Mean and standard deviation of the daily difference after calibration of lunar irradiation effect in the urban area.

Table 1. VIIRS channels specifications

OGCSBN_2019_v35n2_265_t0001.png 이미지

Table 2. Coordinate system of collected SDR data

OGCSBN_2019_v35n2_265_t0002.png 이미지

Table 3. Phases of the Moon during Nov.-Dec. 2017

OGCSBN_2019_v35n2_265_t0003.png 이미지

Table 4. Mean and standard deviation of the daily difference before and after calibration of lunar irradiation effect

OGCSBN_2019_v35n2_265_t0004.png 이미지

참고문헌

  1. Cao, C., X. Shao, and S. Uprety, 2013. Detecting light outages after severe storms using the S-NPP/VIIRS day/night band radiances, IEEE Geoscience and Remote Sensing Letters, 10(6): 1582-1586. https://doi.org/10.1109/LGRS.2013.2262258
  2. Cho, W., C. Y. Sung, and K. S. Ki, 2014. Characterizing light pollution in national parks during peak and off-peak tourist seasons using nighttime satellite images, Korean Journal of Environmental and Ecology, 28(4): 484-489 (in Korean with English abstract). https://doi.org/10.13047/KJEE.2014.28.4.484
  3. Killick, R., P. Fearnhead, and I. A. Eckley, 2012. Optimal detection of changepoints with a linear computational cost, Journal of the American Statistical Association, 107: 1590-1598. https://doi.org/10.1080/01621459.2012.737745
  4. Kim, J., 2018. Estimation of DMSP-OLS night vision correction coefficient and urban area extraction in South Korea, Sangmyung University, Seoul, Republic of Korea.
  5. Lee, M., S. Myeong, S. Jeon, and J. S. Won, 2009. Identification of flooded areas and post-flooding conditions: Developing flood damage mitigation strategies using satellite radar imagery, Journal of Environmental Policy, 8(2): 1-23 (in Korean with English abstract). https://doi.org/10.17330/JOEP.8.2.200906.1
  6. Miller, S. D., W. Straka III, S. P. Mills, C. D. Elvidge, T. F. Lee, J. Solbrig, A. Walther, A. K. Heidinger, and S. T. Weiss, 2013. Illuminating the capabilities of the Suomi national polar-orbiting partnership (NPP) visible infrared imaging radiometer suite (VIIRS) day/night band, Remote Sensing, 5: 6717-6766. https://doi.org/10.3390/rs5126717
  7. Molthan, A. and G. Jedlovec, 2013. Satellite observations monitor outages from Superstorm Sandy, Eos, Transactions American Geophysical Union, 94(5): 53-54.
  8. OGR projections tutorial, 2019. https://www.gdal.org, Accessed on Mar. 1, 2019.
  9. Pavolonis, M.J., A. K. Heidinger, and J. Sieglaff, 2013. Automated retrievals of volcanic ash and dust cloud properties from upwelling infrared measurements, Journal of Geophysical Research, 118: 1436-1458.
  10. Plan to implement the National Spatial Information Policy, 2017. MLTMA (Ministry of Land, Transport and Maritime Affairs, Sejong, Republic of Korea (in Korean).
  11. Roman, M.O., Z. Wang, Q. Sun, V. Kalb, S. Miller, A. Molthan, L. Schultz, J. Bell, E. Stokes, B. Pandey, K. Seto, D. Hall, T. Oda, R. Wolfe, G. Lin, N. Golpayegani, S. Devadiga, C. Davidson, S. Sarkar, C. Praderas, J. Schmaltz, R. Boller, J. Stevens, O. M. R. Gonzalez, E. Padilla, J. Alonso, Y. Detres, R. Armstrong, I. Miranda, Y. Conte, N. Marrero, K. acManus, T. Esch, and E. J. Masuoka, 2018. NASA's black Marble nighttime lights product suite, Remote Sensing of Environment, 210: 113-143. https://doi.org/10.1016/j.rse.2018.03.017
  12. Walther, A. and A. K. Heidinger, 2012. Implementation of the daytime cloud optical and microphysical properties algorithm (DCOMP) in PATMOS-x, Journal of Applied Meteorology and Climatology, 51: 1371-1390. https://doi.org/10.1175/JAMC-D-11-0108.1
  13. Wang, Z., M. O. Roman, Q. Sun, A. L. Molthan, L. A. Schultz, and V. L. Kalb, 2018. Monitoring disaster-related power outages using NASA black marble nighttime light product, Proc. of 2018 ISPRS TC III Mid-term Symposium, Beijing, China, May 7-10, pp. 1853-1856.
  14. Zhao, X., B. Yu, Y. Liu, S. Yao, T. Lian, L. Chen, C. Yang, Z. Chen, and J. Wu, 2018. NPP-VIIRS DNB Daily Data in Natural Disaster Assessment: Evidence from Selected Case Studies, Remote Sensing, 10(10): 1526. https://doi.org/10.3390/rs10101526