DOI QR코드

DOI QR Code

Analysis of the Antioxidant Properties of 2,2-diphenyl-1 Picrylhydroazyl, Hydroxyl Radicals, and Nitric Oxide in Alaska Pollock Roe, with or without Natural Fermented Seasoned

알래스카 명란의 DPPH, OH, NO의 항산화 특성 분석

  • Hwang, Ji-Young (Research and Development Institute, Deok-Hwa Food) ;
  • Jang, Jong-Soo (Research and Development Institute, Deok-Hwa Food) ;
  • Huh, Man Kyu (Food Science and Technology Major, Dong-eui University)
  • Received : 2019.02.26
  • Accepted : 2019.03.27
  • Published : 2019.04.30

Abstract

Alaska pollock (Gadus chalcogrammus) is a marine fish species belonging to the family Gadidae. In this study, whether the Alaska Polloack Roe have antioxidant properties, 2,2-diphenyl-1 picrylhydroazyl (DPPH), hydroxyl radical (OH) reducing activity, and nitric oxide radical (NO) scavenging activity were evaluated in distilled water extract (DWE) and ethanol extract (ETE) of raw Alaska pollock roe, Gochujang Pollock roe, and fermented seasoned Pollock roe. The DPPH scavenging activity of the DWE with Gochujang Pollock roe was 71.9% at a concentration of 1.0 mg/ml and that of the ETE was 73.7% at the same concentration. The DPPH scavenging activity of the DWE with fermented seasoned Pollock roe was 78.0% at 1.0 mg/ml, whereas that of ETE was 78.4% at the same concentration. The $IC_{50}$ values of the DWE and ETE of raw Pollock roe for DPPH were $11.65{\mu}g/ml$ and $11.47{\mu}g/ml$, respectively. The OH scavenging activities of raw Pollock roe, Gochujang Pollock roe, and fermented seasoned Pollock roe ethanolic extracts at a concentration of 1.0 mg/ml were 70.9%, 79.0, and 80.6%, respectively. The $IC_{50}$ values of the DWE and EWE of raw Pollock roe for NO were $11.45{\mu}g/ml$ and $11.41{\mu}g/ml$, respectively. The DPPH, OH, and NO scavenging abilities in DWEs and ETEs of Gochujang and fermented seasoned Pollock roe were higher than those of instant (no Gochujang or season treatment) treatment Pollock roe. Both the Gochujang and fermented seasoned Pollock roes have natural radical scavenging ability and may be useful potential antioxidant food supplements.

SMGHBM_2019_v29n4_428_f0001.png 이미지

Fig. 1. When L- Ascorbic acid was 100%, it showed relative inhibitory effects (%) on DPPH by water and ethanol extracts from various Pollock roes.

SMGHBM_2019_v29n4_428_f0002.png 이미지

Fig. 2. When H2O2 and L- Ascorbic acid were 100%, it showed relative inhibitory effects on OH by water and ethanol extracts from various Pollock roes.

SMGHBM_2019_v29n4_428_f0003.png 이미지

Fig. 3. When Gallic acid and L- Ascorbic acid were 100%, it showed relative inhibitory effects on NO by water and ethanol extracts from various Pollock roes.

Table 1. The degree of inhibition (%) of DPPH properties of premium Pollock roe with raw, Gochujang, and fermented seasoning at different concentrations

SMGHBM_2019_v29n4_428_t0001.png 이미지

Table 2. The degree of inhibition (%) of hydroxyl radical (OH) scavenging activity of premium Pollock roe with raw, Gochujang, and fermented seasoning at different concentrations

SMGHBM_2019_v29n4_428_t0002.png 이미지

Table 3. The degree of inhibition (%) of nitric oxide radical (NO) scavenging activity of premium Pollock roe with raw, Gochujang, and fermented seasoning at different concentrations

SMGHBM_2019_v29n4_428_t0003.png 이미지

Table 4. The 50% inhibition (IC50) of DPPH, OH, and NO of Alaska Pollock roe at different solvents

SMGHBM_2019_v29n4_428_t0004.png 이미지

References

  1. Alaska Seafood Marketing Institute. 2007. Analyses of Specialty Alaska Seafood Products, pp. 1-104. McDowell Group: Alaska, USA.
  2. Aruoma, O. I. 2003. Methodological consideration for characterization for potential antioxidant actions of bioactive components in plants foods. Mutat. Res. 532, 9-20.
  3. Bektasoglu, B., Celik, S. E., Ozyurek, M., Guclu, K. and Apak, R. 2006. Novel hydroxyl radical scavenging antioxidant activity assay for water-soluble antioxidants using a modified CUPRAC method. Biochem. Biophys. Res. Commun. 345, 1194-1200. https://doi.org/10.1016/j.bbrc.2006.05.038
  4. Brand-Williams, W., Cuvelier, M. E. and Berset, C. 1995. Use of free radical method to evaluate antioxidant activity. Food Sci. Technol. 28, 25-30.
  5. Chiou, T. K., Matsui, T. and Konosu, S. 1988. Purification and properties of an aminopeptidase from Mullet, Mugil-Cephalus, roe. Agric. Biol. Chem. 52, 235-242.
  6. Cornish, M. L. and Garbary, D. J. 2010. Antioxidants from macroalgae: Potential applications in human health and nutrition. Algae 25, 155-171. https://doi.org/10.4490/algae.2010.25.4.155
  7. Halliwell, B. 1995. How to characterize an antioxidant- An update. Biochem. Soc. Symp. 61, 73-101. https://doi.org/10.1042/bss0610073
  8. Halliwell, B., Gutteridge, J. M. C. and Arouma, O. I. 1987. The deoxyribose method: a simple test tube assay for the determination of rate constants for reactions of hydroxyl radicals. Anal. Biochem. 165, 21-29.
  9. Harada, K., Maeda, T., Hasegawa, Y., Tokunaga, T., Tamura, Y. and Koizumi, T. 2010. Antioxidant activity of fish sauces including puffer (Lagocephalus wheeleri) fish sauce measured by the oxygen radical absorbance capacity method. Mol. Med. Rep. 3, 663-668.
  10. Kato, H., Lee, I. E,, Chuyen, N. V., Kim, S. B. and Hayase, F. 1987. Inhibition of nitrosamine formation by nondialyzable melanoidins. Agric. Biol. Chem. 51, 1333-1338.
  11. Kim, J. S., Moon, G. S., Lee, K. H. and Lee, Y. S. 2006. Studies on quality changes and antioxidant activity during the fermentation of the salt fermented whangseoke. J. Kor. Soc. Food Sci. Nutr. 35, 171-176. https://doi.org/10.3746/jkfn.2006.35.2.171
  12. Kim, S. M. 2003. The functionality of anchovy sauce. Food Industry Nutr. 8, 9-17.
  13. Lee, N. K., Kim, H. W., Chang, H. I., Yun, C. W., Kim, S. W., Kang, C. W. and Paik, H. D. 2006. Probiotic properties of Lactobacillus plantarum NK181 isolated from Jeotgal, a Korean fermented food. Food Sci. Biotechnol. 15, 227-231.
  14. Lobo, L., Patil, A., Phatak, A. and Chandra, N. 2010. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn Rev. 4, 118-126. https://doi.org/10.4103/0973-7847.70902
  15. Mheen, T. 1993. Microbiology of salted-fermented fishery products in Korea, pp. 231-247. In: Lee, C. H., Steinkraus, K. H. and Alan Reilly, P. J. (eds.), Fish Fermentation Technology, United Nation University Press: Tokyo, Japan.
  16. Mun, E. G., Kim, B., Kim, E. Y., Lee, H. J., Kim, Y., Park, Y. and Cha, Y. S. 2018. Research trend in traditional fermented foods focused on health functional evaluation. J. Kor. Soc. Food Sci. Nutr. 47, 373-386. https://doi.org/10.3746/jkfn.2018.47.4.373
  17. Nagmoti, D. M., Khatri, D. K., Juvekar, P. R. and Juvekar, A. R. 2011. Antioxidant activity and free radical-scavenging potential of Pithecellobium dulce Benth seed extracts. Free Rad. Antiox. 2, 37-43.
  18. NOAA Fisheries. 2015. Walleye Pollock Research. Alaska Fisheries Science Center: Alaska, USA.
  19. Sharma, O. P. and Bhat, T. K. 2009. DPPH antioxidant assay revisited. Food Chem. 113, 1202-1205. https://doi.org/10.1016/j.foodchem.2008.08.008
  20. Sumanont, Y., Murakami, Y., Tohda, M., Vajragupta, O., Matsumoto, K. and Watanabe, H. 2007. Evaluation of the nitric oxide radical scavenging activity of manganese complexes of curcumin and its derivative. Biol. Pharm. Bull. 27, 170-173.
  21. Tsai, P. J., Tsai, T. H., Yu, C. H. and Ho, S. C. 2007. Evaluation of NO suppressing activity of several Mediterranean culinary spices. Food Chem. Toxicol. 45, 440-447. https://doi.org/10.1016/j.fct.2006.09.006
  22. Valentao, P., Fernandes, E., Carvalho, F., Andrade, P. B., Seabra, R. M. and Bastos, M. L. 2003. Hydroxyl radical and hypochlorous acid scavenging activity of small Centaury (Centaurium erythraea) infusion: a comparative study with green tea (Camellia sinensis). Phytomedicine 10, 517-522. https://doi.org/10.1078/094471103322331485
  23. Yang, J. W., Kim, S. S., Choi, S. Y., Choi, I. S. and Lee, Y. S. 2012. Proportion optimization for manufacture Kochujang sauce supplemented with tonic herbal extract and beef using response surface methodology. Korea J. Food Cookery Sci. 28, 133-141. https://doi.org/10.9724/kfcs.2012.28.2.133
  24. Zubia, M., Fabre, M. S., Kerjean, V., Le Lann, K., Stiger-Pouvreau, V., Fauchon, M. and Deslandes, E. 2009. Antioxidant and antitumor activities of some Phaeophyta from Brittany Coasts. Food Chem. 116, 693-701. https://doi.org/10.1016/j.foodchem.2009.03.025