DOI QR코드

DOI QR Code

Analysis of Biomarkers Using Optical Electronic-Nose

광학식 전자코에 의한 생체표지자 분석

  • Yi, Seung-Hwan (College of Convergence Technology, Korea National University of Transportation) ;
  • Kim, Jung-Sik (Department of Industrial and Management, Korea National University of Transportation) ;
  • Yi, Su-Uk (College of Korean Medicine, Dongguk University)
  • 이승환 (한국교통대학교, 융합기술대학) ;
  • 김정식 (한국교통대학교, 산업경영공학과) ;
  • 이수욱 (동국대학교 한의과대학)
  • Received : 2019.04.17
  • Accepted : 2019.05.28
  • Published : 2019.05.31

Abstract

The biomarkers related to the colorectal cancers and diseases were surveyed and summarized, and an optical electronic nose was researched and developed for their analysis. The prototyped sensor revealed that it could discriminate two gases: ethanol 2000 ppm and $CO_2$ 500 ppm. Furthermore, the sensor demonstrated the potential capability of estimation of $CO_2$ concentration with 95% confidence level. Based on the above experimental results, the developed optical electronic nose was tested with the mixtures of gases (Isopropyl Alcohol, Acetone, Methanol, and Toluene) and the biomarkers were successfully segregated using principal component analysis.

HSSHBT_2019_v28n3_171_f0001.png 이미지

Fig. 1. Optical electronic-nose for screening of colorectal diseases.

HSSHBT_2019_v28n3_171_f0002.png 이미지

Fig. 2. Experimental setup for testing optical e-nose: (a) photo of measurement system, (b) block diagram of measurement system.

HSSHBT_2019_v28n3_171_f0003.png 이미지

Fig. 3. Voltage differences of optical gas sensor as a function of center wavelength.

HSSHBT_2019_v28n3_171_f0004.png 이미지

Fig. 4. Cumulated output voltage difference as a function of CO2 concentrations.

HSSHBT_2019_v28n3_171_f0005.png 이미지

Fig. 5. Principal component analysis (PCA) of CO2 and ethanol gases and mixtures of gases: Iso-propyl alcohol (IPA), methanol (M), acetone (A) and toluene (T).

Table 1. Biomarkers surveyed from the articles related to the colorectal diseases and their central absorption wavelength.

HSSHBT_2019_v28n3_171_t0001.png 이미지

Acknowledgement

Supported by : 한국연구재단

References

  1. I. Oakley-Girvan and S.W. Davis, "Breath based volatile organic compounds in the detection of breast, lung, and colorectal cancers: A systematic review", Cancer Biomark., pp. 29-39, 2018.
  2. W. Filipiak, P. Mochalski, A. Filipiak, C. Ager, R. Cumeras, C.E. Davis, A. Agapiou, K. Unterkofler, and J. Troppmair, "A compendium of volatile organic compounds (VOCs) released by human cell lines", Curr. Med. Chem., Vol. 23, No. 20, pp. 2112-2131. 2016. https://doi.org/10.2174/0929867323666160510122913
  3. M. D Lena, F. Porcelli, and D. F. Altomare, "Volatile organic compounds as new biomarkers for colorectal cancer: a review", Colorectal Dis., Vol.18, No. 17, pp.654-663, 2016. https://doi.org/10.1111/codi.13271
  4. C. L. Silva, M. Passos, and J. S. Camara, "Investigation of urinary volatile organic metabolites as potential cancer biomarkers by solid-phase microextraction in combination with gas chromatography-mass spectrometry", Brit. J. Cancer, Vol.105, No. 12, pp. 1894-1904, 2011. https://doi.org/10.1038/bjc.2011.437
  5. I. Ahmed, R. Greenwood, B. Costello, N. Ratcliffe, and C.S. Probert, "Investigation of faecal volatile organic metabolites as novel diagnostic biomarkers in inflammatory bowel disease", Aliment. Pharmacol. Ther., Vol. 43, No. 5, pp. 596-611, 2016. https://doi.org/10.1111/apt.13522
  6. J. C. Arthur and C. Jobin, "The struggle within: microbial influences on colorectal cancer", Inflamm. Bowel Dis. Vol. 17, No. 1, pp. 396-409, 2011. https://doi.org/10.1002/ibd.21354
  7. C. Pagnini, V. D. Corleto, M. L. Mangoni, E. Pilozzi, M. S. Torre, R. Marchese, A. Carnuccio, E. D. Giulio, and G. F. Delle, "Alteration of local microflora and alpha-defensins hyper-production in colonic adenoma mucosa", J. Clin. Gastroenterol., Vol. 45, No. 7, pp. 602-610, 2011. https://doi.org/10.1097/MCG.0b013e31820abf29
  8. R. E. Ley, P. J. Turnbaugh, S. Klein, and J. I. Gordon, "Microbial ecology: human gut microbes associated with obesity", Nature, Vol. 444, No. 7122, pp.1022-1023, 2006. https://doi.org/10.1038/4441022a
  9. E. P. Nyangale, D. S. Mottram, and G. R. Gibson, "Gut microbial activity, implications for health and disease: the potential role of metabolite analysis", J. Proteome. Res., Vol. 11, No. 12, pp. 5573-5585, 2012. https://doi.org/10.1021/pr300637d
  10. D. Monleon, J.M. Morales, A. Barrasa, J. A. Lopez, C. Vazquez, and B. Celda, "Metabolite profiling of fecal water extracts from human colorectal cancer", NMR Biomed. Vol. 22, No. 3, pp. 342-348, 2009. https://doi.org/10.1002/nbm.1345
  11. P. Louis and H. J. Flint, "Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine", FEMS Microbiol. Lett., Vol. 294, No. 1, pp. 1-8, 2009. https://doi.org/10.1111/j.1574-6968.2009.01514.x
  12. H. Wang, V. Tso, C. Wong, D. Sadowski, and R. N. Fedorak, "Development and validation of a highly sensitive urine-based test to identify patients with colonic adenomatous polyps", Clin. Transl. Gastroenterol., Vol. 5, No. 3, pp. e54(1)-e54(8), 2014. https://doi.org/10.1038/ctg.2014.2
  13. J. R. Marchesi, E. Holmes, F. Khan, S. Kochhar, P. Scanlan, F. Shanahan, I. D. Wilson, and Y. Wang, "Rapid and noninvasive metabonomic characterization of inflammatory bowel disease", J. Proteome. Res., Vol. 6, No. 2, pp. 546-551, 2007. https://doi.org/10.1021/pr060470d
  14. S. R. Markar, S. T. Chin, A. Romano, T. Wiggins, S. Antonowicz, P. Paraskeva, P. Ziprin, A. Darzi, and G. B. Hanna, "Breath Volatile Organic Compound Profiling of Colorectal Cancer Using Selected Ion Flow-tube Mass Spectrometry", Ann. Surg., Vol. 269, No. 5, pp. 903-910, 2019. https://doi.org/10.1097/SLA.0000000000002539
  15. S. Esfahani and J. A. Covington, "Low cost optical electronic nose for biomedical applications", Proc. Eurosens., Vol.1, No. 4, pp. 589(1)-589(4), 2017.
  16. H. Amal, M. Leja, K. Funka, I. Lasina, R. Skapars, A. Sivins, G. Ancans, I. Kikuste, A. Vanags, I. Tolmanis, A. Kirsners, L. Kupcinskas, and H. Haick, "Breath testing as potential colorectal cancer screening tool", Int. J. Cancer, Vol. 138, No. 1, pp. 229-236, 2016. https://doi.org/10.1002/ijc.29701
  17. E. Westenbrink, R. P. Arasaradnam, N. O'Connell, C. Bailey, C. Nwokolo, K. D. Bardhan, and J. A. Covington, "Development and application of a new electronic nose instrument for the detection of colorectal cancer", Biosens. Bioelectron., Vol. 67, pp. 733-738, 2015. https://doi.org/10.1016/j.bios.2014.10.044
  18. R. P. Arasaradnam, M. J. McFarlne, C. Ryan-Fisher, E. Westenbrink, P. Hodges, M. G. Thomas, S. Chambers, N. O'connell, C. Bailey, C. Harmston, C. U. Nwokolo, K. D. Bardhan, and J. A. Covington, "Detection of colorectal cancer (CRC) by urinary volatile organic compound analysis", PLoS One, Vol. 9, No. 9, pp. e108750(1)-e108750(6), 2014.
  19. J. A. Covington, E. W. Westenbrink, N. Ouaret, R. Harbord, C. Bailey, N. O'connell, J. Cullis, N. Williams, C. U. Nwokolo, K. D. Bardhan, and R. P. Arasaradnam, "Application of a novel tool for diagnostic bile acid diarrhoea", Sensors, Vol.13, No. 9, pp. 11899-11912, 2013. https://doi.org/10.3390/s130911899
  20. R. P. Arasaradnam, N. Quraishi, I. Kyrou, C. U. Nwokolo, M. Joseph, S. Kumar, K. D. Bardhan, and J. A. Covington, "Insights into 'fermentonomics': evaluation of volatile organic compounds (VOCs) in human disease using an electronic 'e-nose'", J. Med. Eng. Technol., Vol. 35, No. 2, pp. 87-91, 2011. https://doi.org/10.3109/03091902.2010.539770
  21. J. Hodgkinson, R. Smith, W. O. Ho, J. R. Saffell, and R. P. Tatam, "Non-dispersive infra-red (NDIR) measurement of carbon dioxode at 4.2 um in a compact and optically efficient sensor", Sens. Actuator B Chem., Vol. 186, pp. 580-588, 2013. https://doi.org/10.1016/j.snb.2013.06.006
  22. H. Hussain, J. H. Kim, and S. H. Yi, "Characteristics and temperature compensation of non-dispersive infrared (NDIR) alcohol gas sensors according to incident light intensity, Sensors, Vol.18, No. 9, pp. 2911-2916, 2018. https://doi.org/10.3390/s18092911