DOI QR코드

DOI QR Code

Growth of Tin Dioxide Nanostructures on Chemically Synthesized Graphene Nanosheets

화학적으로 합성된 그래핀 나노시트 위에서의 이산화주석 나노구조물의 성장

  • Kim, Jong-IL (Department of Advanced Chemical Engineering, Mokwon University) ;
  • Kim, Ki-Chul (Department of Advanced Chemical Engineering, Mokwon University)
  • 김종일 (목원대학교 신소재화학공학과) ;
  • 김기출 (목원대학교 신소재화학공학과)
  • Received : 2019.02.04
  • Accepted : 2019.05.03
  • Published : 2019.05.31

Abstract

Metal oxide/graphene composites have been known as promising functional materials for advanced applications such as high sensitivity gas sensor, and high capacitive secondary battery. In this study, tin dioxide ($SnO_2$) nanostructures were grown on chemically synthesized graphene nanosheets using a two-zone horizontal furnace system. The large area graphene nanosheets were synthesized on Cu foil by thermal chemical vapor deposition system with the methane and hydrogen gas. Chemically synthesized graphene nanosheets were transferred on cleaned $SiO_2$(300 nm)/Si substrate using the PMMA. The $SnO_2$ nanostuctures were grown on graphene nanosheets at $424^{\circ}C$ under 3.1 Torr for 3 hours. Raman spectroscopy was used to estimate the quality of as-synthesized graphene nanosheets and to confirm the phase of as-grown $SnO_2$ nanostructures. The surface morphology of as-grown $SnO_2$ nanostructures on graphene nanosheets was characterized by field-emission scanning electron microscopy (FE-SEM). As the results, the synthesized graphene nanosheets are bi-layers graphene nanosheets, and as-grown tin oxide nanostructures exhibit tin dioxide phase. The morphology of $SnO_2$ nanostructures on graphene nanosheets exhibits complex nanostructures, whereas the surface morphology of $SnO_2$ nanostructures on $SiO_2$(300 nm)/Si substrate exhibits simply nano-dots. The complex nanostructures of $SnO_2$ on graphene nanosheets are attributed to functional groups on graphene surface.

SHGSCZ_2019_v20n5_81_f0001.png 이미지

Fig. 1. Schematic diagram of (a) synthesis of graphene nanosheets by thermal CVD system, (b) growth of tin dioxide nanostructures on graphene nanosheets by two-zone thermal CVD system, and (c) procedure of direct growth of SnO2 nanostructures on graphene nanosheets.

SHGSCZ_2019_v20n5_81_f0002.png 이미지

Fig. 4. FE-SEM images of as-grown SnO2 nanostructures on (a) ~ (c) chemically synthesized graphene nanosheets and (d) SiO2(300 nm)/Si substrate. The magnification is (a) 10,000x, (b) & (d) 100,000x and (c) 300,000x, respectively.

SHGSCZ_2019_v20n5_81_f0003.png 이미지

Fig. 2. (a) Raman spectrum, (b) and (c) Raman mapping images of as-synthesized graphene nanosheets before SnO2 growth. (b) Raman mapping image of I2D/IG peak and (c) Raman mapping image of ID peak.

SHGSCZ_2019_v20n5_81_f0004.png 이미지

Fig. 3. (a) Raman spectrum, (b) and (c) Raman mapping image of as-grown SnO2 nanostructures on graphene. (b) Raman mapping image of I2D/IG peak and (c) Raman mapping image of ID peak.

References

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, "Electric Field Effect in Atomically Thin Carbon Films", Science, Vol. 306, pp. 666-669, October, 2004. DOI:https://dx.doi.org/10.1126/science.1102896 https://doi.org/10.1126/science.1102896
  2. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, B. H. Hong, "Large scale pattern growth of graphene films for stretchable transparent electrodes", Nature, Vol. 457, pp. 706-710, February, 2009. DOI: https://dx.doi.org/10.1038/nature07719 https://doi.org/10.1038/nature07719
  3. G. R. Yazdi, T. Iakimov, R. Yakimova, "Epitaxial Graphene On SiC : A Review of Growth and Characterization", Crystals, Vol. 6, pp. 53-97, May, 2016. DOI:https://dx.doi.org/10.3390/cryst6050053 https://doi.org/10.3390/cryst6050053
  4. N. I. Zaaba, K. L. Foo, U. Hashim, S. J. Tan, W. W. Liu, C. H. Voon, "Synthesis of graphene oxide using modified Hummers method : solvent influence", Procedia Engineering, Vol. 184, pp. 469-477, April, 2017. DOI:https://dx.doi.org/10.1016/j.proeng.2017.04.118 https://doi.org/10.1016/j.proeng.2017.04.118
  5. X. Wang, X. Zhou, K. Yao, J. Zhang, Z. Liu, "A $SnO_{2}$/graphene composite as a high stability electrode for lithium ion batteries", Carbon, Vol. 49, pp. 133-139, September, 2011. DOI:https://dx.doi.org/10.1016/j.carbon.2010.08.052 https://doi.org/10.1016/j.carbon.2010.08.052
  6. H. J. Park, Y. S. Chung, S. H. Lee, E. J. Lee, H. S. Ahn, S. H. Kim, D. J. Kim, "$SnO_{2}$/graphene oxide composites on VOC gas sensing properties", Journal of the Electrochemical Society, Vol. 164, No. 13, pp. B690-B694, October, 2017. DOI:https://dx.doi.org/10.1149/2.1381713jes https://doi.org/10.1149/2.1381713jes
  7. Y. Xie, S. Yu, Y. Zhong, Q. Zhang, Q. Zhang, Y. Zhou, "$SnO_{2}$/graphene quantum dots composited photocatalyst for efficient nitric oxide oxidation under visible light", Applied Surface Science, Vol. 448, pp. 655-661, April, 2018. DOI:https://dx.doi.org/10.1016/j.apsusc.2018.04.145 https://doi.org/10.1016/j.apsusc.2018.04.145
  8. S. G. Chatterjee, S. Chatterjee, A. K. Ray, A. K. Chakraborty, "Graphene-metal oxide nanohybrids for toxic gas sensor", Sensors and Actuators B, Vol. 221, pp. 1170-1181, December, 2015. DOI:http://dx.doi.org/10.1080/22243682.2013.771917 https://doi.org/10.1016/j.snb.2015.07.070
  9. A. Debataraja. A. R. Muchtar, N. L. W. Septiani, B. Yuliarto, Nugraha, B. Sunendar, "High performance carbon monoxide sensor based on nano composite of $SnO_{2}$-graphene", IEEE Sensors Journal, Vol. 17, No. 24, pp. 8297-8305, December, 2017. DOI:https://dx.doi.org/10.1109/jsen.2017.2764088 https://doi.org/10.1109/JSEN.2017.2764088
  10. L. Li, A. Kovalchuk, J. M. Tour, "$SnO_{2}$-reduced graphene oxide nanoribbons as anodes for lithium ion batteries with enhanced cycling stability", Nano Research, Vol. 7, No. 9, pp. 1319-1326, May, 2014. DOI:https://dx.doi.org/10.1007/s12274-014-0496-x https://doi.org/10.1007/s12274-014-0496-x
  11. M. K. Singh, R. K. Pandey, R. Prakash, "High-performance photo detector based on hydrothermally grown $SnO_{2}$ nanowire/reduced graphene oxide (rGO) hybrid material", Organic Electronics, Vol. 50, pp. 359-366, August, 2017. DOI:https://dx.doi.org/10.1016/j.orgel.2017.08.016 https://doi.org/10.1016/j.orgel.2017.08.016
  12. H. Na, J. H. Park, J. H. Hwang, J. B. Kim, "Site-specific growth and density control of carbon nanotubes by direct deposition of catalytic nanoparticles generated by spark discharge", Nanoscale Research Letters, Vol. 8, October, 2013. DOI:https://dx.doi.org/10.1186/1556-276X-8-409
  13. S. Y. Ma, X. H. Yang, X. L. Huang, A. M. Sun, H. S. Song, H. B. Zhu, "Effect of post-annealing treatment on the microstructure and optical properties of ZnO/PS nanocomposite films", Journal of Alloys and Compounds, Vol. 566, pp. 9-15, March, 2013. DOI:https://dx.doi.org/10.1016/j.jallcom.2013.02.179 https://doi.org/10.1016/j.jallcom.2013.02.179
  14. J-I. Kim, K-C. Kim, "The influence of oxygen gas flow rate on growth of tin dioxide nanostructures", Journal of the Korea Academia-Industrial cooperation Society, Vol. 19, No.10, pp. 1-7, October, 2018. DOI:https://dx.doi.org/10.5762/KAIS.2018.19.10.1
  15. Z. Li, P. Wu, C. Wang, X. Fan, W. Zhang, X. Zhai, C. Zeng, Z. Li, J. Yang, J. Hou, "Low-temperature growth of graphene by chemical vapor deposition using solid and liquid carbon sources", ACS Nano, Vol. 5, No. 4, pp. 3385-3390, March, 2015. DOI:https://dx.doi.org/10.1021/nn200854p https://doi.org/10.1021/nn200854p
  16. S-A. Oh, K-C. Kim, "Growth of vanadium dioxide nanostructures on graphene nanosheets", Thin Solid Films, Vol. 676, pp. 151-156, 2019. DOI:https://dx.doi.org/10.1016/j.tsf.2019.01.014 https://doi.org/10.1016/j.tsf.2019.01.014