DOI QR코드

DOI QR Code

Analysis of Environmental Factors Associated with Cyanobacteria Dominance in Baekje Weir and Juksan Weir

백제보와 죽산보에서 남조류 우점 환경요인 분석

  • Received : 2019.03.03
  • Accepted : 2019.05.22
  • Published : 2019.05.30

Abstract

Followingthe Four Rivers Project, cyanobacterial blooms have been frequently observed in the upstream of the installed weirs. The aim of this study was to characterize the major environmental factors that are associated with the cyanobacteria dominance in Baekje Weir (Geum River) and Juksan Weir (Youngsan River) based on intensive experiments and systematic data mining methods. The factors related to the cyanobacteria dominance include7-days cumulative rainfall (APRCP7), 7-days averaged flow (Q7day), water temperature (Temp), stratification strength (${\Delta}T$), electronic conductivity (EC), DO, pH, $NO_3-N$, $NH_3-N$, TN, TP, $PO_4-P$, Chl-a, Fe, BOD, COD, TOC, and $SiO_2$. The most highly correlatedfactors to the dominant cyanobacteria were found to be EC, Temp, Q7day, $PO_4-P$ in theBaekje Weir. On the other hand, those dominant in the Juksan Weir were ${\Delta}T$, TOC, Temp, EC and TN. The EC showed a strong correlation with cyanobacteria dominance in both weirs because a high EC represents a persisted low flow condition. The cyanobacteria dominance was as high as 56 % when the EC was equal or greater than $418{\mu}S/cm$ in Baekje Weir. It was as high as 63% when the ${\Delta}T{\geq}2.1^{\circ}C$ in the Juksan Weir. However, nutrients showed a minor correlation with cyanobacteria dominance in both weirs. The results suggest that the cyanobacteria dominate in astate where the water flow rate is low, water temperature is high and thermal stratification is strengthened. Therefore, the improvement of flow regimes is the most important to prevent persistent thermal stratification and formation of cyanobacteria bloom in theBaekje and JuksanWeirs.

SJBJB8_2019_v35n3_257_f0001.png 이미지

Fig. 1. Locations of study sites and monitoring stations in BJW and JSW.

SJBJB8_2019_v35n3_257_f0002.png 이미지

Fig. 2. The overall processes of this study.

SJBJB8_2019_v35n3_257_f0003.png 이미지

Fig. 3. Temporal variations of precipitation and cell density of each algae group(surface layer) in (a) BJW and (b) JSW Weirs

SJBJB8_2019_v35n3_257_f0004.png 이미지

Fig. 4. The correlation between TP-Chl-a and TN-Chl-a at each weir.

SJBJB8_2019_v35n3_257_f0005.png 이미지

Fig. 5. The comparison of measured cyanobacteria dominance with simulated results using SMLR and RF models

SJBJB8_2019_v35n3_257_f0006.png 이미지

Fig. 6. Partial dependence plots of the RF models, showing the marginal effects of a single variable on cyanobacteria dominance

SJBJB8_2019_v35n3_257_f0007.png 이미지

Fig. 7. Evaluation of environmental conditions that have influence on the cyanobacteria dominance by using a decision tree.

SJBJB8_2019_v35n3_257_f0008.png 이미지

Fig. 8. The correlation between EC (µS/cm) and flow (m3/s) ((a): BJW, (b): JSW).

SJBJB8_2019_v35n3_257_f0009.png 이미지

Fig. 9. Bi-plots of PCA results grouped by season and HAB level.

Table 1. Descriptive statistics of data used in this study

SJBJB8_2019_v35n3_257_t0001.png 이미지

Table 2. Bi-variables correlation analysis between variables observed in BJW (right-gray) and JSW (left-white) weir.

SJBJB8_2019_v35n3_257_t0002.png 이미지

Table 3. Correlation analysis between nutrients and Chl-a at each weir,

SJBJB8_2019_v35n3_257_t0003.png 이미지

Table 4. Subset regression variables that best matched the performance criterion.

SJBJB8_2019_v35n3_257_t0004.png 이미지

Table 5. Integration of study results for comprehensive interpretation.

SJBJB8_2019_v35n3_257_t0005.png 이미지

Acknowledgement

Supported by : 국토교통과학기술진흥원

References

  1. Ahn, C. Y., Lee, J. Y., and Oh, H. M. (2013). Control of microalgal growth and competition by N:P ratio manipulation, Korean Journal of Environmental Biology, 31(2), 61-68. https://doi.org/10.11626/KJEB.2013.31.2.061
  2. An, K. G. and Jones, J. R. (2000). Factors regulating bluegreen dominance in a reservoir directly influenced by the Asian monsoon, Hydrobiologia, 432, 37-48. https://doi.org/10.1023/A:1004077220519
  3. Box, G. and Cox, D. (1964). An analysis of transformations, Journal of the Royal Statistical Society. Series B(Methodological), 26(2), 211-252.
  4. Breiman, L. (2001). Random forests, Machine Learning, 45, 5-32.
  5. Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984). Classification and decision trees, Wadsworth.
  6. Breiman, L. and Cutler, A. (2015). Breiman and Cutler's random forests for classification and regressio, http://www.stat.berkeley.edu/-breiman/RandomForests (accessed Dec. 2018).
  7. Carpenter, S. R. and Kitchell, J. R. (1993). Cascading trophic interactions and lake productivity, Bioscience, 35, 634-639.
  8. Chung, S. W., Imberger, J., and Hipsey, M. R., and Lee, H. S. (2014). The influence of physical and physiological processes on the spatial heterogeneity of a Microcystis bloom in a stratified reservoir, Ecological Modeling, 289, 133-149.
  9. Fujimoto, N. and Sudo, R. (1997). Nutrient-limited growth of Microcystis aeruginosa and Phormidium tenue and competition under various N:P supply ratios and temperature, Limnology and Oceanography, 42, 250-256.
  10. Han, J. H. and An, K. G. (2013). Chemical water quality and fish community characteristics in the mid- to downstream reach of Geum river, Korean Society of Environmental Biology, 31(3), 180-188.
  11. Horne, A. J. and Goldman, C. R. (1994), Limnology, McGraw-Hill:New York, USA, 465, ISBN 9780070236738.
  12. Health Canada. (2002). Water quality and health bureau, (healty) environments and consumer safety branch, health Canada, Ottawa, Ontario, http://whttp://www.hc-sc.gc.ca/ewh-semt/pubs/water-eau/doc_supappui/index_e.html (accessed Dec. 2018).
  13. Husson, F., Le, S., and Pages, J. (2010). Exploratory multivariate analysis by example using R, Chapman and Hall.
  14. Hwang, S. J., Kwun, S. K., and Yoon, C. G. (2003). Water quality and limnology of Korean reservoirs, Paddy and Water Environment, 1(1), 43-52. https://doi.org/10.1007/s10333-003-0010-7
  15. Isles, P. D. F., Rizzo, D. M., Xu, Y., and Schroth, A. W. (2017). Modeling the drivers of interannual variability in cyanobacterial bloom severity using self-organizing maps and high-frequency data, Inland water, 7(3), 333-347. https://doi.org/10.1080/20442041.2017.1318640
  16. Johnson, T. C., Odada, E., and Whittaker, K. T. (1996). The limnology, climatology and paleoclimatology of the East African lakes, Gordon and Breach Publishers, Australia, ISBN 2884492348.
  17. Jung, S. J., Lee, D. J., Hwang, K. S., Lee, K. H., Choi, K. C., Im, S. S., Lee, Y. H., Lee, J. Y., and Lim, B. J. (2012). Evaluation of pollutant characteristics in Yeongsan river using multivariate analysis, The Korean Society of Limnology, 45(4), 368-377.
  18. Jung, S. Y. and Kim, I. K. (2017). Analysis of water quality factor and correlation between water quality and Chl-a in middle and downstream weir section of Nakdong river, Journal of Korean Society of Environmental Engineers, 39(2), 89-96. https://doi.org/10.4491/KSEE.2017.39.2.89
  19. Kim, B. C., Sa, S. H., Kim, M. S., Lee, Y. K., and Kim, J. K. (2007). The limiting nutrient of eutrophication in reservoirs of Korea and suggestion of a reinforced phosphorus standard for sewage treatment effluent, Journal of Korean Society on Water Environment, 23(4), 512-517.
  20. Konopka, A. E., Klemer, A. R., Walsby, A. E., and Ibelings, B. W. (1993). Effects of macronutrients upon buoyancy regulation by metalimnetic oscillatoria agardhii in Deming lake, Minnesota, Journal of Plankton Research, 15(9), 1019-1034. https://doi.org/10.1093/plankt/15.9.1019
  21. Liaw, A. and Wiener, M. (2002). Classification and regression by randomforest, R News, 2, 18-22.
  22. Ministry of Environment (ME). (2017). Standard Methods for Analysis of Water Pollution, Ministry of Environment. [Korean Literature]
  23. Mitrovic, S. M., Oliver, R. L., Rees, C., Bowling, L. C., and Buckney, R. T. (2003). Critical flow velocities for the growth and dominance of Anabaena circinalis in some turbid freshwater rivers, Freshwater Biology, 48, 164-174.
  24. Moreira, S., Schultze, M., Rahn, K., and Boehrer, B. (2016). A practical approach to lake water density from electrical conductivity and temperature, Hydrology and Earth System Sciences, 20(7), 2975. https://doi.org/10.5194/hess-20-2975-2016
  25. Okino, T. (1974). Studies on the blooming of Microcystis aeruginosa II: rapid accumulation of phosphate by Microcystis aeruginosa, Journal of the Faculty of Science Shinshu University, 8(2), 135-145.
  26. Paerl, H. W. and Otten T. G. (2013). Harmful cyanobacterial blooms: Causes, consequences, and controls, Microbial Ecology, 65(4), 995-1010. https://doi.org/10.1007/s00248-012-0159-y
  27. Parinet, J., Rodriguez, M. J., and Serodes, J. (2010). Influence of water quality on the presence of off-flavour compounds (geosmin and 2-methylisoborneol), Water Research, 44, 5847-5856.
  28. Park, H. K. (2007). Survey method relating freshwater phytoplankton for the management of water resources, Journal of Korean Society of Environmental Engineers, 29(6), 593-609.
  29. Peter, A., Koster, O., Schildknecht, A., and Von Gunten, U. (2009). Occurrence of dissolved and particle-bound taste and odor compounds in Swiss lake waters, Water Research, 43(8), 2191-2200. https://doi.org/10.1016/j.watres.2009.02.016
  30. Recknagel, F., French, M., Harkonen, P., and Yabunaka, K. I. (1997). Artificial neural network approach for the modelling and prediction of algal blooms, Ecological Modelling, 96, 11-28.
  31. Reynolds, C. S. (1973). Growth and buoyancy of Microcystis aeruginosa Kutz. emend. Elenkin in a shallow Eutrophic Lake, (Preceedings) Biological Sciences, 184(1074), 29-50. https://doi.org/10.1098/rspb.1973.0029
  32. Reynolds, C. S. and Walsby, A. E. (1975). Water-blooms, Biological Reviews of the Cambridge Philosophical Society, 50(4), 437-481.
  33. Rowe, M. D., Anderson, E. J., Wang, J., and Vanderploeg, H. A. (2015). Modeling the effect of invasive quagga mussels on the spring phytoplankton bloom in Lake Michigan, Journal of Great Lakes Research, 41, 49-65.
  34. Schindler, D. W. (1977). Evolution of phosphorus limitation in lakes, Science, 195(4275), 260-262. https://doi.org/10.1126/science.195.4275.260
  35. Schindler, D. W., Hecky, R. E., Findlay, D. L., Stainton, M. P., Parker, B. P., Paterson, M. J., Beaty, K. G., Lyng, M., and Kasian, S. (2008). Eutrophication of lakes cannot be controlled by reducing nitrogen input:Results of a 37-year whole-ecosystem experiment, Proceeding of the National Academy of Sciences of the United States of America, 105(32), 11254-11258. https://doi.org/10.1073/pnas.0805108105
  36. Sherman, B. S., Webster, I. T., Jones, G. J., and Oliver, R. L. (1998). Transitions between Aulacoseira and Anabaena dominance in a turbid river weir pool, Limnology and Oceanography, 43, 1902-1915.
  37. Soltani, N., Khodaei, K., Alnajar, N., Shahsavari, A., and Ashja Ardalan, A. (2012). Cyanobacterial community patterns as water quality Bioindicators, Iranian Journal of Fisheries Sciences, 11(4), 876-891.
  38. Son, M. S., Jung, H. S., Park, C. H., Park, J. H., Im, C. H., and Kim, K. H. (2018). The change of phytoplankton community structure and water quality in the Juksan Weir of the Yeongsan River watershed, Korean Journal of Environmental Biology, 36(4), 591-600.
  39. Thomas, R. H. and Walsby, A. E. (1986). The effects of temperature on recovery of buoyancy by Microcystis, Journal of General Microbiology, 132, 1665-1672.
  40. Tian, D., Xie, G., Tian, J., Tseng, K. H., Shum, C. K., Lee, J. Y., and Liang, S. (2017). Spatiotemporal variability and environmental factors of harmful algal blooms(HABs) over western Lake Erie, PLOS ONE, 12(6), 1932-6203.
  41. Welch, E. B., Jacoby, J. M., Horner, R. R., and Seeley, M. R. (1988). Nuisance biomass levels of periphytic algae in streams, Hydrobiologia, 157(2), 161-168. https://doi.org/10.1007/BF00006968
  42. Wetzel, R. G. (2001). Limnology, Lake and River Ecosystems, Academic Press, New York.
  43. Zhang, M., Zhang, Y., Yang, Z., Wei, L., Yang, W., Chen, C., and Kong, F. (2016). Spatial and seasonal shifts in bloom-forming cyanobacteria in Lake Chaohu: Patterns and driving factors, Phycological Research, 64, 44-55. https://doi.org/10.1111/pre.12112