Validation of an analytical method for cyanide determination in blood, urine, lung, and skin tissues of rats using gas chromatography mass spectrometry (GC-MS)

Shin, Min-Chul;Kwon, Young Sang;Kim, Jong-Hwan;Hwang, Kyunghwa;Seo, Jong-Su

  • Received : 2019.04.03
  • Accepted : 2019.05.09
  • Published : 2019.06.25


This study was conducted to establish the analytical method for the determination of cyanide in blood, urine, lung and skin tissues in rats. In order to detect or quantify the sodium cyanide in above biological matrixes, it was derivatized to Pentafluorobenzyl cyanide (PFB-CN) using pentafluorobenzyl bromide (PFB-Br) and then reaction substance was analyzed using gas chromatography mass spectrometer (GC/MS)-SIM (selected ion monitoring) mode. The analytical method for cyanide determination was validated with respect to parameters such as selectivity, system suitability, linearity, accuracy and precision. No interference peak was observed for the determination of cyanide in blank samples, zero samples and lower limit of quantification (LLOQ) samples. The lowest limit detection (LOD) for cyanide was $10{\mu}M$. The linear dynamic range was from 10 to $200{\mu}M$ for cyanide with correlation coefficients higher than 0.99. For quality control samples at four different concentrations including LLOQ that were analyzed in quintuplicate, on six separate occasions, the accuracy and precision range from -14.1 % to 14.5% and 2.7 % to 18.3 %, respectively. The GC/MS-based method of analysis established in this study could be applied to the toxicokinetic study of cyanide on biological matrix substrates such as blood, urine, lung and skin tissues.


Cyanide;Sodium cyanide;Method validation;GC/MS


  1. G. Liu, J. Liu, K. Hara, Y. Wang, Y. Yu, L. Gao, and L. Li, J. Chromatography B, 877, 3054-3058 (2009).
  2. S. M. Lee and J. S. Kim, J. Korean Med. Assoc., 56(12), 1076-1083 (2013).
  3. S. W. Sauer and M. E. Keim, Ann. Emerg. Med., 37, 635-641 (2001).
  4. R. K. Bhandari, R. P. Oda, I. Petrikovics, D. E. Thompson, M. Brenner, S. B. Mahon, V. S. Bebarta, G. A. Rockwood, and B. A. Logue, J. Anal. Toxicol., 38(4), 218-225 (2014).
  5. K. Minakata, H. Nozawa, K. Gonmori, I. Yamagishi, M. Suzuki, K. Hasegawa, K. Watanabe, and O. Suzuki, Anal. Bioanal. Chem., 400(7), 1945-1951 (2011).
  6. T. T. Chistison and J. S. Rohrer, J. Chromatography A, 1155, 31-39 (2007).
  7. A. Tung, J. Lynch, and W. A. McdDade, J. Moss, Anesth. Analg., 85, 1045 (1997).
  8. A. M. Calafat and S. B. Stanfill, J. Chromatography B, 772, 131-137 (2002).
  9. S. Tsukamoto, T. Kanegae, Y. Matsumura, S. Uchigasaki, M. Kitazawa, T. Muto, S. Chiba, S. Oshida, T. Nagoya, and M. Shimamura, Jpn. J. Legal. Med., 48, 336-342 (1994).
  10. S. H. Chen, S. M. Wu, H. S. Kou, and H. L. Wu, J. Anal. Toxicol., 18, 81-85 (1994).
  11. S. Kage, T. Nagata, and K. Kudo, J. Chromatography B, 675, 27-32 (1996).
  12. B. D. Paul and M. L. Smith, J. Anal. Toxicol., 30, 511-515 (2006).
  13. R. K. Bhandari, R. P. Oda, S. L. Youso, I. Petrikovics, V. S. Bebarta, G. A. Rockwood, and B. A. Logue, Anal. Bioanal. Chem., 404, 2287-2294 (2012).
  14. A. Tracqui, J. S. Raul, A. Geraut, L. Berthelon, and B. Ludes, J. Anal. Toxicol., 26, 144-148 (2002).
  15. D. Tsikas, J. Chromatography B, 1043, 187-201 (2017).
  16. J. B. Lee, S. K. Shon, S. H. Woo, S. Y. Park, J. H. Hwang, O. S. Kwon, N. Y. Kim, and K. J. Paeng, Anal. Sci. Technol., 29(2), 73-78 (2016).
  17. Guideline for Industry on Bioanalytical Method Validation, FDA/CDER, May 2018.
  18. Guideline on Bioanalytical Method Validation, EMA, Jul, 2011.


Supported by : Korea Ministry of Environment (MOE)