Presenting Direction for the Implementation of Personal Movement Trainer through Artificial Intelligence based Behavior Recognition

인공지능 기반의 행동인식을 통한 개인 운동 트레이너 구현의 방향성 제시

  • Ha, Tae Yong (Dept. of Smart Convergence Consulting, Hansung University) ;
  • Lee, Hoojin (Dept. of Smart Convergence Consulting, Hansung University)
  • 하태용 (한성대학교 스마트융합컨설팅학과) ;
  • 이후진 (한성대학교 스마트융합컨설팅학과)
  • Received : 2019.03.27
  • Accepted : 2019.06.20
  • Published : 2019.06.28


Recently, the use of artificial intelligence technology including deep learning has become active in various fields. In particular, several algorithms showing superior performance in object recognition and detection based on deep learning technology have been presented. In this paper, we propose the proper direction for the implementation of mobile healthcare application that user's convenience is effectively reflected. By effectively analyzing the current state of use satisfaction research for the existing fitness applications and the current status of mobile healthcare applications, we attempt to secure survival and superiority in the fitness application market, and, at the same time, to maintain and expand the existing user base.


Healthcare;Fitness;Artificial Intelligence;Deep Running;CNN;RNN

OHHGBW_2019_v10n6_235_f0001.png 이미지

Fig. 1. Fitness Apps[4]

OHHGBW_2019_v10n6_235_f0002.png 이미지

Fig. 2. Deep learning, Machine learning, ArtificialIntel ligence Comparison[8]

OHHGBW_2019_v10n6_235_f0003.png 이미지

Fig. 3. Structure of Convolutional Neural Network[14]

OHHGBW_2019_v10n6_235_f0004.png 이미지

Fig. 4. RNN Structure[15]

OHHGBW_2019_v10n6_235_f0005.png 이미지

Fig. 5. LSTM Cell Structure[16]

OHHGBW_2019_v10n6_235_f0006.png 이미지

Fig. 6. Distribution of Confidence Values[19]

OHHGBW_2019_v10n6_235_f0007.png 이미지

Fig. 7. Body Keypoint Localization[20]

OHHGBW_2019_v10n6_235_f0008.png 이미지

Fig. 8. Research Model

OHHGBW_2019_v10n6_235_f0009.png 이미지

Fig. 9. Detection Using Confidence Maps

OHHGBW_2019_v10n6_235_f0010.png 이미지

Fig. 10. Association Using Part Affinity Fields

OHHGBW_2019_v10n6_235_f0011.png 이미지

Fig. 11. PCK 0.2

Table 1. Classification Of Mobile Healthcare by Type

OHHGBW_2019_v10n6_235_t0001.png 이미지

Table 2. Healthcare Application Functional Classification

OHHGBW_2019_v10n6_235_t0002.png 이미지

Table 3. System Requirements

OHHGBW_2019_v10n6_235_t0003.png 이미지


Supported by : Hansung University


  1. K. E. Ko & K. B. Shim. (2017). Trend of Object Recognition and Detection Technology Using Deep Learning. Journal of Control Robotics and Systems, 23(3), 17-24.
  2. M. C. Bruno Silva, J. P. C . Rodrigues, I. T. Diez & M. L. Coronado & K. Saleem (2015). Mobile-health: A review of current state in 2015. Journal of Biomedical Informatics, 56( August), 265-272 . DOI : 10.1016/j.jbi.2015.06.003
  3. Embrain Trend Monitor. (2011). Online health Care Service Survey. Research Report [Online].
  4. M. Y. Lee, J. H. Kang & I. K. Jeon. (2013). A Study on The Effect of Smart Phone Fitness Application(App)'s Service Quality on Satisfaction after use, Trust, Immersion and Willingness to Continue to Use. Journal of The Korean Physical Education Association, 52(2), 379-396.
  5. H. Choi & Y. J. Choi. (2013). An Exploratory Study on Success Model for Smart-Phone Game Applications According to Users' Cultural Difference : Focusing on Uncertainty Avoidance and, The Korea Contents Association, 13(2), 62-70 DOI : 10.5392/JKCA.2013.13.02.062
  6. Z. Zheng. (2015). User Acceptance of Mobile Healthcare Applications: An Integrated Model of UTAUT and HBM Theory, Korea Policy Science Institute, 19(3), 203-236. UCI : G704-000863.2015.19.3.002
  7. S. H. Lee & S. S. Yoo. (2014). Mobile Healthcare Application Status and Forecast. Information and Communication Broadcasting Policy, 26(17), 1-23.
  8. H. I. Ku. (2018). Artificial Intelligence and Deep Running Trends. The world of electricity, 67(7), 7-12.
  9. Y. LeCun et al. (1989). Backpropagation Applied to Handwritten Zip Code Recognition. Neural Computation, 1(4), 541-551. DOI : 10.1162/neco.1989.1.4.541
  10. B. Sven. (2003). Hierarchical Neural Networks for Image Interpretation, London : Springer DOI : 10.1007/b11963
  11. P. Y. Simard, D. Steinkraus & J. C. Platt. (2017, Aug). Best Practices for Convolutional Neural Networks Applied to Visual Document Analysis. Seventh International Conference on Document Analysis and Recognition, (pp. 958 - 962). Edinburgh : IEEE. DOI : 10.1109/ICDAR.2003.1227801
  12. Y. LeCun, Y. Bengio & G. Hinton. (2015). Deep Learning. Nature, 521, 436-444. DOI : 10.1038/nature14539
  13. Y. LeCun & Y. Bengio. (1995). The Handbook of Brain Theory and Neural Networks, MA : MIT Press Cambridge. DOI : 10.1016/0928-4869(96)83761-X
  14. Y. J. Kim. (2017). Analysis of image Big Data using Deep Learning, Domestic Doctor. Chung-Ang University Graduate School. Seoul.
  15. A. Graves, A. Mohamed & G. Hinton. (2013, March). Speech Recognition with Deep Recurrent Neural Networks. International Conference on Acoustics, Speech and Signal Processing. (pp. 6645-6649). Edinburgh : IEEE. DOI : 10.1109/ICASSP.2013.6638947
  16. S. C. Lee, H. D. Jung, S. T. Park & S. Kim. (2017). Deep Running. Journal of KSNVE, 27(3), 19-25. 171670
  17. M. Linna, J. Kannala & E. Rahtu. (2018, January). Real-time Human Pose Estimation with Convolutional Neural Networks. In Proceedings of the 13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications,(pp. 335-342). Madeira : VISIGRAPP DOI: 10.5220/0006624403350342
  18. V. Ramakrishna, D. Munoz, M . Hebert, J. A. Bagnell & Y. Sheikh. (2014, September). Pose Machines : Articulated Pose Estimation via Inference Machines. 13th European Conference on Computer Vision, (pp 33-47). Zurich : ECCV DOI : 10.1007/978-3-319-10605-2_3
  19. M. Andriluka, L. Pishchulin, P. Gehler & B. Schiele. (2014, June). 2D Human Pose Estimation : New Benchmark and State of The Art Analysis. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognitio, (pp. 3686-3693). Columbus : IEEE. DOI : 10.1109/CVPR.2014.471
  20. A. Bulat & G. Tzimiropoulos. (2016, September). Human Pose Estimation via Convolutional Part Heatmap Regression. 14th European Conference on Computer Vision, (pp. 717-732). Amsterdam : ECCV DOI : 10.1007/978-3-319-46478-7_44