Efficient Recognition Method for Ballistic Warheads by the Fusion of Feature Vectors Based on Flight Phase

비행 단계별 특성벡터 융합을 통한 효과적인 탄두 식별방법

  • Choi, In-Oh (Department of Electrical Engineering, Pohang University of Science and Technology) ;
  • Kim, Si-Ho (3rd R&D Institute, Agency for Defence Development) ;
  • Jung, Joo-Ho (Department of Mechanical Engineering, Pohang University of Science and Technology) ;
  • Kim, Kyung-Tae (Department of Electrical Engineering, Pohang University of Science and Technology) ;
  • Park, Sang-Hong (Department of Electronic Engineering, Pukyong National University)
  • Received : 2019.04.09
  • Accepted : 2019.06.10
  • Published : 2019.06.30


It is very difficult to detect ballistic missiles because of small cross-sections of the radar and the high maneuverability of the missiles. In addition, it is very difficult to recognize and intercept warheads because of the existence of debris and decoy with similar motion parameters in each flight phase. Therefore, feature vectors based on the maneuver, the micro-motion according to flight phase are needed, and the two types of features must be fused for the efficient recognition of ballistic warhead regardless of the flight phase. In this paper, we introduce feature vectors appropriate for each flight phase and an effective method to fuse them at the feature vector-level and classifier-level. According to the classification simulations using the radar signals predicted by the CAD models, the closer the warhead was to the final destination, the more improved was the classification performance. This was achieved by the classifier-level fusion, regardless of the flight phase in a noisy environment.

JJPHCH_2019_v30n6_487_f0001.png 이미지

그림 1. 탄도미사일 구성요소 및 비행 단계 Fig. 1. Elements and flight stage of the ballistic missile.

JJPHCH_2019_v30n6_487_f0002.png 이미지

그림 2. 추진단계에서 탄도미사일과 연료탱크간의 변별 시나리오 Fig. 2. Discrimination scenario between ballistic missile and debris at boost phase.

JJPHCH_2019_v30n6_487_f0003.png 이미지

그림 3. 중간단계에서 탄두와 기만체간의 미세운동 Fig. 3. Micro-motion for warhead and decoy at mid-course phase.

JJPHCH_2019_v30n6_487_f0004.png 이미지

그림 4. 탄두와 기만체에 대한 Iff(f, f)의 예시들[5] Fig. 4. Examples of Iff(f, f) for warhead and decoy[5].

JJPHCH_2019_v30n6_487_f0005.png 이미지

그림 5. F3를 위한 기저영상 B(f, f)[5] Fig. 5. Basis image B(f, f) for F3[5].

JJPHCH_2019_v30n6_487_f0006.png 이미지

그림 6. 종착단계에서 탄도계수추정 알고리즘 및 예시[4] Fig. 6. Algorithm and examples for ballistic factor estimation at terminal phase[4].

JJPHCH_2019_v30n6_487_f0007.png 이미지

그림 7. 제안된 가중치 함수들 Fig. 7. Proposed weight functions.

JJPHCH_2019_v30n6_487_f0008.png 이미지

그림 8. 탄두와 기만체의 CAD 모델들 Fig. 8. CAD models for warhead and decoy.

JJPHCH_2019_v30n6_487_f0009.png 이미지

그림 9. 추진단계에서의 변별 결과 Fig. 9. Discrimination results at boost phase.

JJPHCH_2019_v30n6_487_f0010.png 이미지

그림 10. 중간 및 종착 단계에서의 변별 결과. Fig. 10. Discrimination results at mid-course and terminal phase.

표 1. 탄두, 기만체 및 연료 탱크의 특징 Table 1. Characteristics for warhead, decoy, and debris.

JJPHCH_2019_v30n6_487_t0001.png 이미지

표 2. 탄두와 기만체의 규격[4] Table 2. Specifications for warhead and decoy[4].

JJPHCH_2019_v30n6_487_t0002.png 이미지

표 3. 기동 관련 실험 변수들[4] Table 3. Simulation parameters for maneuver[4].

JJPHCH_2019_v30n6_487_t0003.png 이미지

표 4. 미세운동 관련 실험 변수들 Table 4. Simulation parameters for micro-motion.

JJPHCH_2019_v30n6_487_t0004.png 이미지


Supported by : 국방과학연구소, 한국연구재단


  1. G. N. Lewis, T. A. Postol, "Future challenges to ballistic missile defence," IEEE Spectrum, vol. 34, no. 9, pp. 60-68, Sep. 1997.
  2. A. R. Persico, C. Clemente, D. Gaglione, C. V. Ilioudis, J. Cao, and L. Pallotta, et al., "On model, algorithms, and experiment for micro-Doppler-based recognition of ballistic targets," IEEE Transactions on Aerosapce and Electronic Systems, vol. 53, no. 3, pp. 1088-1108, Jun. 2017.
  3. Y. J. Choi, I. S. Choi, J. Shin, and M. Chung, "Classification of the front body of a missile and debris in boosting part separation phase using periodic and statistical properties of dynamics RCS," Journal of Korean Institute of Electromagnetic Engineering and Science, vol. 29, no. 7, pp. 540-549, Jul. 2018.
  4. I. O. Choi, K. B. Kang, S. H. Kim, J. H. Jung, K. T. Kim, and S. H. Park, "Performance analysis of the discrimination between space-targets using the maneuvering," Journal of Korean Institute of Information Technology, vol. 15, no. 11, pp. 55-63, Nov. 2017.
  5. I. O. Choi, J. H. Jung, K. T. Kim, L. Riggs, S. H. Kim, and S. H. Park, "Efficient 3DFV for improved discrimination of ballistic warhead," Electronics Letters, vol. 54, no. 25, pp. 1452-1454, Dec. 2018.
  6. I. O Choi, S. H. Kim, J. H. Jung, K. T. Kim, and S. H. Park, "An efficient method to extract the micro-motion parameter of the missile using the time-frequency image," Journal of Korean Institute of Electromagnetic Engineering and Science, vol. 27, no. 6, pp. 557-565, Jun. 2016.
  7. C. Guo, H. Wang, T. Jian, Y. He, and X. Zhang, "Radar target recognition based on feature Pyramid fusion lightweight CNN," IEEE Access, vol. 7, pp. 51140-51149, Apr. 2019.
  8. Y. J. Choi, I. S. Choi, and D. Y. Chae, "Decision-level fusion scheme of SVM and naive Bayes classifier for radar target recognition," in 2018 International Symposium on Antennas and Propagation(ISAP), Busan, Oct. 2018, pp. 1-2.
  9. S. H. Kim, S. I. Lee, and D. Y. Chae, "Aircraft classification with fusion of HRRP and JEM based on the confidence of a classifier," Journal of Korean Institute of Electromagnetic Engineering and Science, vol. 28, no. 3, pp. 217-224, Mar. 2017.
  10. H. Gao, L. Xie, S. Wen, and Y. Kuang, "Micro-Doppler signature extraction from ballistic target with micro-motions," IEEE Transactions on Aerospace and Electronic Systems, vol. 46, no. 4, pp. 1969-1982, Oct. 2010.
  11. L. Liu, D. McLernon, M. Ghogho, W. Hu, and J. Huang, "Ballistic missile detection via micro-Doppler frequency estimation from radar return," Digital Signal Processing, vol. 22, no. 1, pp. 87-95, Jan. 2012.