DOI QR코드

DOI QR Code

Detection of Low-RCS Targets in Sea-Clutter using Multi-Function Radar

다기능 레이다를 이용한 저 RCS 해상표적 탐지성능 분석

  • Lee, Myung-Jun (Department of Electronic Engineering, Pohang University of Science and Technology) ;
  • Kim, Ji-eun (Department of Electronic Engineering, Pohang University of Science and Technology) ;
  • Lee, Sang-Min (Department of Electronic Engineering, Pohang University of Science and Technology) ;
  • Jeon, Hyeon-Mu (Hanwha System) ;
  • Yang, Woo-Yong (Hanwha System) ;
  • Kim, Kyung-Tae (Department of Electronic Engineering, Pohang University of Science and Technology)
  • Received : 2019.05.14
  • Accepted : 2019.06.14
  • Published : 2019.06.30

Abstract

Multi-function radar(MFR) is a system that uses various functions such as detection, tracking, and classification. To operate the functions in real-time, the detection stage in MFR usually uses radar signals for short measurement time. We can utilize several conventional detectors in the MFR system to detect low radar cross section maritime targets in the sea-clutter; however, the detectors, which have been developed to be effective for radar signals measured for a longer time, may be inappropriate for MFR. In this study, we proposed a modelling technique of sea-clutter short measurement time. We combined the modeled sea-clutter signal with the maritime-target signal, which was obtained by the numerical analysis method. Using this combined model, we exploited four independent detectors and analyzed the detection performances.

JJPHCH_2019_v30n6_507_f0001.png 이미지

그림 1. 해상 클러터 모델링 흐름도 Fig. 1. Flowchart of sea clutter modeling.

JJPHCH_2019_v30n6_507_f0002.png 이미지

그림 2. 해상클러터 신호 크기 분포 모델링 비교[6] Fig. 2. Comparison of amplitude statics[6].

JJPHCH_2019_v30n6_507_f0003.png 이미지

그림 3. 해상클러터에서 보이는 파도 모습 Fig. 3. Shape of sea waves in sea clutter signal.

JJPHCH_2019_v30n6_507_f0004.png 이미지

그림 4. 해상클러터 신호 거리 프로파일 Fig. 4. Range profile of sea clutter.

JJPHCH_2019_v30n6_507_f0005.png 이미지

그림 5. 레이다 해상 클러터 반사 면적 Fig. 5. Reflected surface of radar.

JJPHCH_2019_v30n6_507_f0006.png 이미지

그림 6. 1차원 일정오경보율 탐지기 구조 Fig. 6. Structure of 1-dimensional CFAR detector.

JJPHCH_2019_v30n6_507_f0007.png 이미지

그림 7. 단일 함수 분해 기법 블록 다이어그램[14] Fig. 7. Block-diagram of EMD[14].

JJPHCH_2019_v30n6_507_f0008.png 이미지

그림 8. 해상 표적 탐지 시뮬레이션 시나리오 Fig. 8. Simulation of marine target detection.

JJPHCH_2019_v30n6_507_f0009.png 이미지

그림 9. 텍스쳐 모델링을 위한 자기 상관 함수 Fig. 9. ACF for texture modeling.

JJPHCH_2019_v30n6_507_f0010.png 이미지

그림 10. 단일 펄스 해상 클러터 모델링 Fig. 10. Sea clutter modeling of single pulse.

JJPHCH_2019_v30n6_507_f0011.png 이미지

그림 11. 다중 펄스 해상 클러터 모델링 Fig. 11. Sea clutter modeling of multi pulses.

JJPHCH_2019_v30n6_507_f0012.png 이미지

그림 12. 탐지성능비교를 위한 ROC 커브 Fig. 12. ROC curve of detection performance.

JJPHCH_2019_v30n6_507_f0013.png 이미지

그림 13. PFA = 5 × 10-2의 CA-CFAR로 인한 오경보 Fig. 13. False alarms from CA-CFAR with PFA = 5 × 10-2.

표 1. 시뮬레이션에서 사용한 클러터, 표적 매개변수 Table 1. Simulation clutter & target parameters.

JJPHCH_2019_v30n6_507_t0001.png 이미지

표 2. 시뮬레이션에서 사용한 레이다 매개변수 Table 2. Simulation radar parameters.

JJPHCH_2019_v30n6_507_t0002.png 이미지

표 3. 시뮬레이션에서 사용한 탐지기법 매개변수 Table 3. Simulation detector parameters.

JJPHCH_2019_v30n6_507_t0003.png 이미지

Acknowledgement

Supported by : 한화시스템

References

  1. X. Chunsheng, C. Hao, and X. Dong, "Sea clutter characteristics analysis and target detection based on HHT," in 2011 International Conference on Consumer Electronics, Communications and Networks(CECNet), XianNing, Apr. 2011, pp. 694-697.
  2. G. Hennessey, H. Leung, A. Drosopoulos, and P. C. Yip, "Sea-clutter modeling using a radial-basis-function neural network," IEEE Journal of Oceanic Engineering, vol. 26, no. 3, pp. 358-372, Jul. 2001. https://doi.org/10.1109/48.946510
  3. J. Hu, W. W. Tung, and J. Gao, "Detection of low observable targets within sea clutter by structure function based multifractal analysis," IEEE Transaction on Antennas and Propagation, vol. 54, no. 1, pp. 136-143, Jan. 2006. https://doi.org/10.1109/TAP.2005.861541
  4. S. Miranda, C. Baker, K. Woodbridge, and H. Griffiths, "Knowledge-based resouce management for multifunciton radar: A look at scheduling and task prioritization," IEEE Signal Processing Magazine, vol. 23, no. 1, pp. 66-76, Feb. 2006.
  5. I. Antipov, "Statistical analysis of Northern Australian coastline sea clutter data," Australian Government Department of Defence Science and Technology, DSTO-TR-1236, 2002.
  6. X. Li, X. Xu, "A statistical model for correlated K-distributed sea clutter," in 2008 Congress on Image and Signal Processing, Sanya, Hainan, May 2008, pp. 408-412.
  7. S. Watts, "Modeling and simulation of coherent sea clutter," IEEE Transactions on Aerospace and Electronic Systems, vol. 48, no. 4, pp. 3303-3317, Oct. 2012. https://doi.org/10.1109/TAES.2012.6324707
  8. H. W. Melief, H. Greidanus, P. van Genderen, and P. Hoogeboom, "Analysis of sea spikes in radar sea clutter data," IEEE Transactions on Geoscience and Remote Sensing, vol. 44, no. 4, pp. 985-993, Apr. 2006 https://doi.org/10.1109/TGRS.2005.862497
  9. A. Farina, F. Ginin, M. V. Greco, and L. Verranzzani, "High resolution sea clutter data: Statistical analysis of recorded live data," in IEE Proceedings-Radar, Sonar and Navigation, Jun. 1997, vol. 144, no. 3, pp. 121-130. https://doi.org/10.1049/ip-rsn:19971107
  10. S. H. Choi, J. M. Song, H. M. Jeon, Y. S. Chung, J. M. Kim, and S. W. Hong, et al., "Simulation of low-grazing-angle coherent sea clutter," The Journal of Korean Institute of Electromagnetic Engineering and Science, vol. 29, no. 8, pp. 615-623, Aug. 2018. https://doi.org/10.5515/KJKIEES.2018.29.8.615
  11. K. D. Ward, R. J. A. Tough, and S. Watts, Sea Clutter: Scattering, the K Distribution and Radar Performance, London, Institution of Engineering and Technology, 2006.
  12. C. Ozdemir, Inverse Synthetic Aperture Radar Imaging with Matlab Algorithm, Mersin, John Wiley & Sons, 2012.
  13. B. R. Mahafza, Radar Systems Analysis and Design Using Matlab, 2nd ed. New York, NY, CRC, 2005.
  14. I. Antipov, "Simulation of sea clutter returns," Australian Government Department of Defence Science and Technology, DSTO-TR-0679, 1998.
  15. M. A. Richards, Fundamentals of Radar Signal Processing, 2nd ed. Chicago, IL, McGraw-Hill, 2005.
  16. Y. Yang, J. Deng, "Empirical mode decomposition as a tree-structured filter: A tutorial view," in 2010 International Conference on Biomedical Engineering and Computer Science, Wuhan, Apr. 2010, pp. 1-4.
  17. L. Yujie, W. Wenguang, and S. Jinping, "Research of small target detection within sea clutter based on chaos," in 2009 International Conference on Environmental Science and Information Application Technology, Wuhan, Jul. 2009, pp. 469-472.
  18. H. Leung, "Experimental modeling of electromagetic wave scattering from an ocean surface based on chaotic theory," Chaos, Solitons & Fractals, vol. 2, no. 1, pp. 25-43, Jan.-Feb. 1992. https://doi.org/10.1016/0960-0779(92)90045-O