DOI QR코드

DOI QR Code

다기능 레이다를 이용한 저 RCS 해상표적 탐지성능 분석

Detection of Low-RCS Targets in Sea-Clutter using Multi-Function Radar

  • Lee, Myung-Jun (Department of Electronic Engineering, Pohang University of Science and Technology) ;
  • Kim, Ji-eun (Department of Electronic Engineering, Pohang University of Science and Technology) ;
  • Lee, Sang-Min (Department of Electronic Engineering, Pohang University of Science and Technology) ;
  • Jeon, Hyeon-Mu (Hanwha System) ;
  • Yang, Woo-Yong (Hanwha System) ;
  • Kim, Kyung-Tae (Department of Electronic Engineering, Pohang University of Science and Technology)
  • 투고 : 2019.05.14
  • 심사 : 2019.06.14
  • 발행 : 2019.06.30

초록

다기능 레이다(multi-function radar: MFR)는 탐지, 추적, 식별 등 다양한 기능을 동시에 수행하는 레이다 시스템이다. 이러한 MFR은 여러 기능을 실시간 내에 수행해야 하기 때문에, 탐지 모드를 위한 측정 시간이 매우 짧은 특징을 갖고 있다. 또한, 저 레이다 단면적(radar cross section: RCS)을 갖는 해상표적을 탐지하기 위해 개발된 기존의 다양한 탐지기법들이 존재하며, 해당 기법들을 MFR 탐지모드에도 사용할 수 있다. 그러나 기존에 연구된 많은 해상표적 탐지기법은 상대적으로 긴 시간 측정된 해상 신호에 대해 효과적 해상표적 탐지가 가능하도록 개발되었기 때문에, 매우 짧은 측정시간을 갖는 MFR 탐지 모드에는 적합하지 않은 부분이 있다. 본 논문에서는 MFR 탐지 모드의 짧은 측정 시간을 고려한 해상클러터 모델링 방법을 제시하고, 이를 이용하여 해상 클러터 신호를 생성하였다. 또한 해상표적 RCS를 수치해석기법을 이용하여 계산하고, 앞에서 계산된 클러터 신호와 결합하였다. 이렇게 생성된 최종 레이다 수신 신호를 이용하여 기존에 개발된 4가지 서로 다른 해상표적 탐지기법을 적용하고, 탐지성능을 분석하였다.

JJPHCH_2019_v30n6_507_f0001.png 이미지

그림 1. 해상 클러터 모델링 흐름도 Fig. 1. Flowchart of sea clutter modeling.

JJPHCH_2019_v30n6_507_f0002.png 이미지

그림 2. 해상클러터 신호 크기 분포 모델링 비교[6] Fig. 2. Comparison of amplitude statics[6].

JJPHCH_2019_v30n6_507_f0003.png 이미지

그림 3. 해상클러터에서 보이는 파도 모습 Fig. 3. Shape of sea waves in sea clutter signal.

JJPHCH_2019_v30n6_507_f0004.png 이미지

그림 4. 해상클러터 신호 거리 프로파일 Fig. 4. Range profile of sea clutter.

JJPHCH_2019_v30n6_507_f0005.png 이미지

그림 5. 레이다 해상 클러터 반사 면적 Fig. 5. Reflected surface of radar.

JJPHCH_2019_v30n6_507_f0006.png 이미지

그림 6. 1차원 일정오경보율 탐지기 구조 Fig. 6. Structure of 1-dimensional CFAR detector.

JJPHCH_2019_v30n6_507_f0007.png 이미지

그림 7. 단일 함수 분해 기법 블록 다이어그램[14] Fig. 7. Block-diagram of EMD[14].

JJPHCH_2019_v30n6_507_f0008.png 이미지

그림 8. 해상 표적 탐지 시뮬레이션 시나리오 Fig. 8. Simulation of marine target detection.

JJPHCH_2019_v30n6_507_f0009.png 이미지

그림 9. 텍스쳐 모델링을 위한 자기 상관 함수 Fig. 9. ACF for texture modeling.

JJPHCH_2019_v30n6_507_f0010.png 이미지

그림 10. 단일 펄스 해상 클러터 모델링 Fig. 10. Sea clutter modeling of single pulse.

JJPHCH_2019_v30n6_507_f0011.png 이미지

그림 11. 다중 펄스 해상 클러터 모델링 Fig. 11. Sea clutter modeling of multi pulses.

JJPHCH_2019_v30n6_507_f0012.png 이미지

그림 12. 탐지성능비교를 위한 ROC 커브 Fig. 12. ROC curve of detection performance.

JJPHCH_2019_v30n6_507_f0013.png 이미지

그림 13. PFA = 5 × 10-2의 CA-CFAR로 인한 오경보 Fig. 13. False alarms from CA-CFAR with PFA = 5 × 10-2.

표 1. 시뮬레이션에서 사용한 클러터, 표적 매개변수 Table 1. Simulation clutter & target parameters.

JJPHCH_2019_v30n6_507_t0001.png 이미지

표 2. 시뮬레이션에서 사용한 레이다 매개변수 Table 2. Simulation radar parameters.

JJPHCH_2019_v30n6_507_t0002.png 이미지

표 3. 시뮬레이션에서 사용한 탐지기법 매개변수 Table 3. Simulation detector parameters.

JJPHCH_2019_v30n6_507_t0003.png 이미지

과제정보

연구 과제 주관 기관 : 한화시스템

참고문헌

  1. X. Chunsheng, C. Hao, and X. Dong, "Sea clutter characteristics analysis and target detection based on HHT," in 2011 International Conference on Consumer Electronics, Communications and Networks(CECNet), XianNing, Apr. 2011, pp. 694-697.
  2. G. Hennessey, H. Leung, A. Drosopoulos, and P. C. Yip, "Sea-clutter modeling using a radial-basis-function neural network," IEEE Journal of Oceanic Engineering, vol. 26, no. 3, pp. 358-372, Jul. 2001. https://doi.org/10.1109/48.946510
  3. J. Hu, W. W. Tung, and J. Gao, "Detection of low observable targets within sea clutter by structure function based multifractal analysis," IEEE Transaction on Antennas and Propagation, vol. 54, no. 1, pp. 136-143, Jan. 2006. https://doi.org/10.1109/TAP.2005.861541
  4. S. Miranda, C. Baker, K. Woodbridge, and H. Griffiths, "Knowledge-based resouce management for multifunciton radar: A look at scheduling and task prioritization," IEEE Signal Processing Magazine, vol. 23, no. 1, pp. 66-76, Feb. 2006.
  5. I. Antipov, "Statistical analysis of Northern Australian coastline sea clutter data," Australian Government Department of Defence Science and Technology, DSTO-TR-1236, 2002.
  6. X. Li, X. Xu, "A statistical model for correlated K-distributed sea clutter," in 2008 Congress on Image and Signal Processing, Sanya, Hainan, May 2008, pp. 408-412.
  7. S. Watts, "Modeling and simulation of coherent sea clutter," IEEE Transactions on Aerospace and Electronic Systems, vol. 48, no. 4, pp. 3303-3317, Oct. 2012. https://doi.org/10.1109/TAES.2012.6324707
  8. H. W. Melief, H. Greidanus, P. van Genderen, and P. Hoogeboom, "Analysis of sea spikes in radar sea clutter data," IEEE Transactions on Geoscience and Remote Sensing, vol. 44, no. 4, pp. 985-993, Apr. 2006 https://doi.org/10.1109/TGRS.2005.862497
  9. A. Farina, F. Ginin, M. V. Greco, and L. Verranzzani, "High resolution sea clutter data: Statistical analysis of recorded live data," in IEE Proceedings-Radar, Sonar and Navigation, Jun. 1997, vol. 144, no. 3, pp. 121-130. https://doi.org/10.1049/ip-rsn:19971107
  10. S. H. Choi, J. M. Song, H. M. Jeon, Y. S. Chung, J. M. Kim, and S. W. Hong, et al., "Simulation of low-grazing-angle coherent sea clutter," The Journal of Korean Institute of Electromagnetic Engineering and Science, vol. 29, no. 8, pp. 615-623, Aug. 2018. https://doi.org/10.5515/KJKIEES.2018.29.8.615
  11. K. D. Ward, R. J. A. Tough, and S. Watts, Sea Clutter: Scattering, the K Distribution and Radar Performance, London, Institution of Engineering and Technology, 2006.
  12. C. Ozdemir, Inverse Synthetic Aperture Radar Imaging with Matlab Algorithm, Mersin, John Wiley & Sons, 2012.
  13. B. R. Mahafza, Radar Systems Analysis and Design Using Matlab, 2nd ed. New York, NY, CRC, 2005.
  14. I. Antipov, "Simulation of sea clutter returns," Australian Government Department of Defence Science and Technology, DSTO-TR-0679, 1998.
  15. M. A. Richards, Fundamentals of Radar Signal Processing, 2nd ed. Chicago, IL, McGraw-Hill, 2005.
  16. Y. Yang, J. Deng, "Empirical mode decomposition as a tree-structured filter: A tutorial view," in 2010 International Conference on Biomedical Engineering and Computer Science, Wuhan, Apr. 2010, pp. 1-4.
  17. L. Yujie, W. Wenguang, and S. Jinping, "Research of small target detection within sea clutter based on chaos," in 2009 International Conference on Environmental Science and Information Application Technology, Wuhan, Jul. 2009, pp. 469-472.
  18. H. Leung, "Experimental modeling of electromagetic wave scattering from an ocean surface based on chaotic theory," Chaos, Solitons & Fractals, vol. 2, no. 1, pp. 25-43, Jan.-Feb. 1992. https://doi.org/10.1016/0960-0779(92)90045-O