Radiation measurement and imaging using 3D position sensitive pixelated CZT detector

  • Kim, Younghak (Department of Bio-convergence Engineering, Korea University) ;
  • Lee, Taewoong (RI Applied Research Team, Korea Institute of Radiologic and Medical Sciences) ;
  • Lee, Wonho (School of Health and Environmental Science, Korea University)
  • Received : 2018.07.26
  • Accepted : 2019.03.12
  • Published : 2019.06.25


In this study, we evaluated the performance of a commercial pixelated cadmium zinc telluride (CZT) detector for spectroscopy and identified its feasibility as a Compton camera for radiation monitoring in a nuclear power plant. The detection system consisted of a $20mm{\times}20mm{\times}5mm$ CZT crystal with $8{\times}8$ pixelated anodes and a common cathode, in addition to an application specific integrated circuit. The performance of the various radioisotopes $^{57}Co$, $^{133}Ba$, $^{22}Na$, and $^{137}Cs$ was evaluated. In general, the amplitude of the induced signal in a CZT crystal depends on the interaction position and material non-uniformity. To minimize this dependency, a drift time correction was applied. The depth of each interaction was calculated by the drift time and the positional dependency of the signal amplitude was corrected based on the depth information. After the correction, the Compton regions of each spectrum were reduced, and energy resolutions of 122 keV, 356 keV, 511 keV, and 662 keV peaks were improved from 13.59%, 9.56%, 6.08%, and 5%-4.61%, 2.94%, 2.08%, and 2.2%, respectively. For the Compton imaging, simulations and experiments using one $^{137}Cs$ source with various angular positions and two $^{137}Cs$ sources were performed. Individual and multiple sources of $^{133}Ba$, $^{22}Na$, and $^{137}Cs$ were also measured. The images were successfully reconstructed by weighted list-mode maximum likelihood expectation maximization method. The angular resolutions and intrinsic efficiency of the $^{137}Cs$ experiments were approximately $7^{\circ}-9^{\circ}$ and $5{\times}10^{-4}-7{\times}10^{-4}$, respectively. The distortions of the source distribution were proportional to the offset angle.


Supported by : Korea Foundation of Nuclear Safety (KoFONS), National Research Foundation of Korea


  1. S.D. Sordo, L. Abbene, E. Caroli, A.M. Mancini, A. Zappettini, P. Ubertini, Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications, Sensors 9 (2009) 3491-3526.
  2. W. Jo, M. Jeong, H. Kim, S. Kim, J. Ha, Preliminary Research of CZT based PET system development in KAERI, J. Radiat. Prot. Res. 41 (2016) 81-86.
  3. L. Cirignano, H. Kim, K. Shah, M. Klugerman, P. Wong, M. Squillante, L. Li, Evaluation of CZT detectors with capacitive Frisch grid structure, Proc. SPIE 5198 (2004) 1-8.
  4. Z. He, W. Li, G.F. Knoll, D.K. Wehe, J. Berry, C.M. Stahle, 3-D position sensitive CdZnTe gamma-ray spectrometers, Nucl. Instrum. Methods A422 (1999) 173-178.
  5. P.N. Luke, Unipolar charge sensing with coplanar electrodes - application to semiconductor detectors, IEEE Trans. Nucl. Sci. 42 (1995) 207-213.
  6. D.S. McGregor, Z. He, H.A. Seifert, D.K. Wehe, R.A. Rojeski, Single charge carrier type sensing with a parallel strip pseudo-Frisch-grid CdZnTe semiconductor radiation detector, Appl. Phys. Lett. 72 (1998) 792-794.
  7. D. Xu, Z. He, C.E. Lehner, F. Zhang, $4{\pi}$ Compton imaging with single 3D position sensitive CdZnTe detector, Proc. SPIE 5540 (2004) 114-115.
  8. C.E. Lehner, Z. He, F. Zhang, $4{\pi}$ Compton imaging using a 3-D position-sensitive CdZnTe detector via weighted list-mode maximum likelihood, IEEE Trans. Nucl. Sci. 51 (2004) 1618-1624.
  9. A. Zoglauer, M. Galloway, M. Amman, S.E. Boggs, J.S. Lee, P.N. Luke, L. Mihailescu, K. Vetter, C.B. Wunderer, First results of the high efficiency multi-mode imager (HEMI), in: Nuclear Science Symposium Conference Record, IEEE, 2009.
  10. C. Szeles, D. Bale, J. Grosholz, G.L. Smith, M. Blostein, J. Eger, Fabrication of high performance CdZnTe Quasi-hemispherical gamma-ray $CAPture^{TM}$ plus detectors, Hard X-Ray and Gamma-Ray Detector Physics VIII (2006) 6319.
  11. A.E. Bolotnikov, K. Ackley, G.S. Camarda, C. Cherches, Y. Cui, G. De Geronimo, J. Fried, D. Hodges, A. Hossain, W. Lee, G. Mahler, M. Maritato, M. Petryk, U. Roy, C. Salwen, E. Vernon, G. Yang, R.B. James, An array of virtual Frisch-grid CdZnTe detectors and a front-end application-specific integrated circuit for large-area position-sensitive gamma-ray cameras, Rev. Sci. Instrum. 86 (2015) 1-10.
  12. C. Wahl, W.R. Kaye, W. Wang, F. Zhang, J.M. Jaworski, A. King, A.Y. Boucher, Z. He, The Polaris-H imaging spectrometer, Nucl. Instrum. Methods Phys. Res. A Accel. Spectrom. Detect. Assoc. Equip. 784 (2015) 377-381.
  13. W. Lee, A.E. Bolotnikov, T. Lee, G.S. Camarda, T. Cui, R. Gul, A. Hossain, Y. Roy, G. Yang, R.B. James, Mini Compton camera based on an array of Frisch-grid CdZnTe detecttors, IEEE Trans. Nucl. Sci. 63 (1) (2016) 259-265.
  14. F. Zhang, Z. He, D. Xu, G.F. Knoll, D.K. Wehe, J.E. Berry, Improved resolution for 3-D position sensitive CdZnTe spectrometers, IEEE Trans. Nucl. Sci. 51 (2004) 2427-2431.
  15. F. Zhang, Z. He, C. Seifert, A prototype three-dimensional position sensitive CdZnTe detector array, IEEE Trans. Nucl. Sci. 54 (2007) 843-848.
  16. A. Dempster, N. Laird, D. Rubin, Maximum likelihood from incomplete data via the EM algorithm, J. R. Stat. Soc. 39 (1977) 1-38.
  17. L.A. Shepp, Y. Vardi, Maximum likelihood reconstruction for emission tomography, IEEE Trans. Med. Imaging MI-2 (1982) 113-122.
  18. K. Lange, R. Carson, EM reconstruction algorithms for emission and transmission tomography, J. Comput. Assist. Tomogr. 8 (1984) 306-316.
  19. D. Xu, Gamma-ray Imaging and Polarization Measurement Using 3-D Position-Sensitive CdZnTe Detectors, department of nuclear engineering and radiological sciences, University of Michigan, Ann Arbor, MI, 2006. Ph. D. dissertation.
  20. H.H. Barrett, T. White, L.C. Parra, List-mode likelihood, J. Opt. Soc. Am. A 14 (1997) 2914-2923.
  21. S.J. Wilderman, N.H. Clinthorne, J.A. Fessler, W.L. Rogers, List-mode likelihood reconstruction of Compton scatter camera images in nuclear medicine, Proc. IEEE Nucl. Sci. Symp. Conf. Rec. (2000) 1716-1720.
  22. J.B. Martin, A Compton Scatter Camera for Spectral Imaging of 0.5 to 3.0 MeV Gamma Rays, Ph. D. dissertation, department of nuclear engineering and radiological sciences, University of Michigan, Ann Arbor, MI, 1988.
  23. R. Cesareo, A.L. Hanson, G.E. Gigante, L.J. Pedraza, S.Q.G. Mahtaboally, Interaction of keV photons with matter and new applications, Phys. Rep. 213 (1992) 117-178.
  24. C. Ordonez, A. Bolozdyna, W. Chang, Doppler broadening of energy spectra in Compton cameras, Proc. 7997 IEEE Nucl. Sci. Symp. 2 (1997) 1361-1365, 1997.
  25. F. Biggs, L.B. Mendelsohn, J.B. Mann, Hartree-Fork Compton profiles for the elements, Atomic Data Nucl. Data Tables 16 (1975) 201-309.
  26. Y. Kim, T. Lee, W. Lee, Double-layered CZT Compton imager, IEEE Trans. Nucl. Sci. 64 (7) (2017) 1769-1773.
  27. R. Redus, Application Note ANCZT-2 Rev.3 Charge Trapping in XR-100T - CdTe and - CZT Detectors, 2007 [Online] Available:
  28. G. Montemont, M. Arques, L. Verger, J. Rustique, A capacitive Frisch grid structure for CdZnTe detectors, IEEE Trans. Nucl. Sci. 48 (2001) 278-281.
  29. F. Zhang, C. Herman, Z. He, G. De Geronimo, E. Vernon, J. Fried, Characterization of the H3D ASIC readout system and 6.0 cm3 3-D position sensitive CdZnTe Detectors, IEEE Trans. Nucl. Sci. 59 (2012) 236-242.
  30. C. Kim, S.E. Anderson, W. Kaye, F. Zhang, Y. Zhu, S.J. Kaye, Z. He, Charge sharing in common-grid pixelated CdZnTe detectors, Nucl. Instrum. Methods A 654 (1) (2011) 233-243.
  31. H3D, H100 gamma-ray imaging spectrometer [Online] Available:,, 2019.
  32. Jiyang Chu, Advanced Imaging Algorithms with Position-Sensitive Gamma-Ray Detectors, Ph. D. dissertation, department of nuclear engineering and radiological sciences, University of Michigan, Ann Arbor, MI, 2018.