DOI QR코드

DOI QR Code

Tween-Span계 비이온성 혼합계면활성제를 이용한 Coconut Oil 원료 유화액의 유화안정성 평가

Evaluation of Coconut Oil-based Emulsion Stability Using Tween-Span Type Nonionic Mixed Surfactant

  • Hong, Seheum (Department of Polymer Science and Engineering, Dankook University) ;
  • Zhu, Kaiyang (Department of Chemical Engineering, Dankook University) ;
  • Zuo, Chengliang (Department of Chemical Engineering, Dankook University) ;
  • Lee, Seung Bum (Department of Chemical Engineering, Dankook University)
  • 투고 : 2019.05.23
  • 심사 : 2019.07.01
  • 발행 : 2019.08.10

초록

본 연구에서는 coconut oil과 Tween-Span계 비이온성 혼합계면활성제를 사용하여 제조한 O/W (oil in water) 유화액의 안정성에 영향을 끼치는 인자를 평가하였다. 이를 위해 비이온성 혼합계면활성제의 HLB value와 첨가량, 균질화 속도를 변수로 설정하여 제조한 O/W 유화액의 평균액적크기, 제타포텐셜, 유화안정도지수(ESI), 열적 불안정도지수(TII) 등으로부터 유화액의 안정성을 평가하였다. 제조한 O/W 유화액의 평균액적크기는 100~200 nm의 나노에멀젼으로서 비이온성 혼합계면활성제의 첨가량 및 균질화 속도가 증가함에 따라 평균액적크기는 감소하였으며, 제타포텐셜은 증가하였다. 비이온성 혼합계면활성제의 HLB value가 6.0, 10.0, 8.0 순으로 우수하게 나타났으며, HLB value가 8.0에서 제조한 유화액의 평균액적크기는 120 nm으로 가장 작고, 제타포텐셜은 40~60 mV로 가장 크게 나타났다. ESI 및 TII를 통한 안정성 평가는 HLB value가 6.0, 10.0, 8.0 순으로 안정성이 증가하였으며, HLB value가 8.0에서의 ESI 및 TII는 각각 80% 이상과 20% 이하로 가장 우수하게 나타났다.

GOOOB2_2019_v30n4_453_f0001.png 이미지

Figure 1. Variation of droplet size as a function of surfactant amount and homogenization speed for HLB value = 8.0 of mixed surfactant.

GOOOB2_2019_v30n4_453_f0002.png 이미지

Figure 2. Variation of zeta-potential as a function of surfactant amount and homogenization speed for HLB value = 8.0 of mixed surfactant.

GOOOB2_2019_v30n4_453_f0003.png 이미지

Figure 3. Emulsion stability index of O/W emulsions for HLB value = 8.0 of mixed surfactant.

GOOOB2_2019_v30n4_453_f0004.png 이미지

Figure 4. Thermal instability index of O/W emulsions for HLB value = 8.0 of mixed surfactant.

GOOOB2_2019_v30n4_453_f0005.png 이미지

Figure 5. Variation of droplet size as a function of HLB values for mixed surfactant = 7.5 wt.%.

GOOOB2_2019_v30n4_453_f0006.png 이미지

Figure 6. Variation of zeta-potential as a function of HLB values for mixed surfactant = 7.5 wt.%.

GOOOB2_2019_v30n4_453_f0007.png 이미지

Figure 7. Emulsion stability index of O/W emulsions for mixed surfactant = 7.5 wt.%.

GOOOB2_2019_v30n4_453_f0008.png 이미지

Figure 8. Thermal instability index of O/W emulsions for mixed surfactant = 7.5 wt.%.

참고문헌

  1. A. Teo, S. J. Lee, K. K. T. Goh, and F. M. Wolber, Kinetic stability and cellular uptake of lutein in WPI-stabilised nanoemulsions and emulsions prepared by emulsification and solvent evaporation method, Food Chem., 221, 1269-1276 (2017). https://doi.org/10.1016/j.foodchem.2016.11.030
  2. E. Hebishy, M. Buffa, B. Juan, A. Blasco-Moreno, and A. J. Trujillo, Ultra high-pressure homogenized emulsions stabilized by sodium caseinate: Effects of protein concentration and pressure on emulsions structure and stability, LWT Food Sci. Technol., 76, 57-66 (2017). https://doi.org/10.1016/j.lwt.2016.10.045
  3. Z. Zhang, X. Wang, J. Yu, S. Chen, H. Ge, and L. Jiang, Freeze-thaw stability of oil-in-water emulsions stabilized by soy protein isolate-dextran conjugates, LWT Food Sci. Technol., 78, 241-249 (2017). https://doi.org/10.1016/j.lwt.2016.12.051
  4. W. C. Griffin, Classification of surface-active agents by HLB, J. Soc. Cosmet. Chem., 1, 311-326 (1949).
  5. J. Y. Yeon, B. R. Shin, T. G. Kim, J. M. Seo, C. H. Lee, S. G. Lee, and H. B. Pyo, A study on emulsion stability of o/w and w/o emulsion according to HLB of emulsifier, J. Soc. Cosmet. Sci. Korea, 40(3), 227-236 (2014). https://doi.org/10.15230/SCSK.2014.40.3.227
  6. M. R. Housaindokht and A. N. Pour, Study the effect of HLB of surfactant on particle size distribution of hematite nanoparticles prepared via the reverse microemulsion, Solid State Sci., 14, 622-625 (2012). https://doi.org/10.1016/j.solidstatesciences.2012.01.016
  7. X. Jin, D. A. Streett, C. A. Dunlap, and M. E. Lyn, Application of hydrophilic-lipophilic balance (HLB) number to optimize a compatible non-ionic surfactant for dried aerial conidia of Beauveria bassiana, Biol. Control, 46, 226-233 (2008). https://doi.org/10.1016/j.biocontrol.2008.03.008
  8. K.-Y. Kyoung and C.-K. Lee, Development and prospect of emulsion technology in cosmetics, J. Soc. Cosmet. Sci. Korea, 32(4), 227-236 (2006).
  9. P. Yunita, S. Irawan, and D. Kania, Optimization of water-based drilling fluid using non-ionic and anionic surfactant additives, Procedia Eng., 148, 1184-1190 (2016). https://doi.org/10.1016/j.proeng.2016.06.628
  10. C. D. Ampatzidis, E.-M. A. Varka, and T. D. Karapantsios, Interfacial activity of amino acid-based glycerol ether surfactants and their performance in stabilizing O/W cosmetic emulsions, Colloids Surf., A, 460, 176-183 (2014). https://doi.org/10.1016/j.colsurfa.2014.02.033
  11. N. Bhatt, R. K. Prasad, and G. M. Panpalia, Stability study of O/W emulsion zeta potential, J. Chem. Res., 2(1), 512-527 (2010).
  12. D. Kelley and D. J McClements, Influence of sodium dodecyl sulfate on the thermal stability of bovine serum albumin stabilized oil-in-water emulsions, Food Hydrocolloids, 17(1), 87-93 (2003). https://doi.org/10.1016/S0268-005X(02)00041-3
  13. Z. Zhang, X. Wang, J. Yu, S. Chen, H. Ge, and L. Jiang, Freeze- thaw stability of oil-in-water emulsions stabilized by soy protein isolate-dextran conjugates, LWT Food Sci. Technol., 78, 241-249 (2017). https://doi.org/10.1016/j.lwt.2016.12.051
  14. J. Zhao, F. Dong, Y. Li, B. Kong, and Q. Liu, Effect of freeze-thaw cycles on the emulsion activity and structural characteristics of soy protein isolate, Process Biochem., 50, 1607-1613 (2015). https://doi.org/10.1016/j.procbio.2015.06.021
  15. W. C. Griffin, Calculation of HLB values of non-ionic surfactants, J. Soc. Cosmet. Chem., 5, 249-256 (1954).
  16. L. O. Orafidiya and F. A. Oladimeji, Determination of the required HLB values of some essential oils, Int. J. Pharm., 237, 241-249 (2002). https://doi.org/10.1016/S0378-5173(02)00051-0