Effects of Different Hydraulic Retention Times on Contaminant Removal Efficiency Using Aerobic Granular Sludge

HRT 변경에 따른 호기성 그래뉼 슬러지의 오염원 제거효율에 미치는 영향

  • Kim, Hyun-Gu (BlueBank Co., Ltd., Business incubator center, Myongji University) ;
  • Ahn, Dae-Hee (BlueBank Co., Ltd., Business incubator center, Myongji University)
  • Received : 2019.06.10
  • Accepted : 2019.07.01
  • Published : 2019.08.31


The purpose of this study was to evaluate the effects of different Hydraulic Retention Times (HRTs) on the contaminant removal efficiency using Aerobic Granular Sludge (AGS). A laboratory-scale experiment was performed using a sequencing batch reactor, and the Chemical Oxygen Demand (COD), nitrogen, orthophosphate removal efficiency, AGS/MLSS ratio, and precipitability in accordance with the HRT were evaluated. As a result, the COD removal efficiency was not significantly different with the reduction in HRT, and at a HRT of 6 h, the removal rate was slightly increased owing to the increase in organic loading rate. The nitrogen removal efficiency was improved by injection of influent division at a HRT of 6 h. As the HRT decreased, the MLSS and AGS tended to increase, and the sludge volume index finally decreased to 50 mL/g. In addition, the size of the AGS gradually increased to about 1.0 mm. Therefore, the control of HRT provides favorable conditions for the stable formation of AGS, and is expected to improve the contaminant removal efficiency with the selection of a proper operation strategy.


Supported by : 환경부


  1. American Public Health Association (APHA), 2008, Standard methods for the examination of water and wastewater, 21st edition, American public health association, Washington D.C., USA.
  2. Bassin, J. P., Pronk, M., Muyzer, G., Kleerebezem, R., Dezotti, M., van Loosdrecht, M. C. M., 2011, Effect of elevated salt concentrations on the aerobic granular sludge process: Linking microbial activity with microbial community structure, Appl. Environ. Microbiol., 77, 7942-7953.
  3. Beun, J. J., Hendriks, A., van Loosdrecht, M. C. M., Morgenroth, E., Wilderer, P. A., Heijnen, J. J., 1999, Aerobic granulation in a sequencing batch reactor, Water Res., 33, 2283-2290.
  4. Cetin, E., Karakas, E., Dulekgurgen, E., Ovez, S., Kolukirik, M., Yilmaz, G., 2018, Effects of high -concentration influent suspended solids on aerobic granulation in pilot-scale sequencing batch reactors treating real domestic wastewater, Water Res., 131, 74-89.
  5. De Bruin, L. M. M., de Kreuk, M. K., van der Roest, H. F. R., Uijterlinde, C., van Loosdrecht, M. C. M., 2004, Aerobic granular sludge technology: An alternative to activated sludge?, Water Sci. Technol., 49, 1-7.
  6. De Kreuk, M. K., Heijnen, J. J., van Loosdrecht, M. C. M., 2005, Simultaneous COD, nitrogen, and phosphate removal by aerobic granular sludge, Biotechnol. Bioeng., 90, 761-769.
  7. De Sousa Rollemberg, S. L., Barros, A. R. M., Firmino, P. I. M., dos Santos, A. B., 2018, Aerobic granular sludge: Cultivation parameters and removal mechanisms, Bioresour. Technol., 270, 678-688.
  8. Fang, H. H. P., Yu, H. Q., 2000, Effect of HRT on mesophilic acidogenesis of dairy wastewater, J. Environ. Eng., 126, 1145-1148.
  9. Fang, H. H. P., Yu, H. Q., 2001, Acidification of lactose in wastewater, J. Environ. Eng., 127, 825-831.
  10. Hamza, R. A., Sheng, Z., Iorhemem, O. T., Zaghloul, M. S., Tay, J. H., 2018, Impact of food-to-microorganisms ratio on the stability of aerobic granular sludge treating high-strength organic wastewater, Water Res., 147, 287-298.
  11. Khan, M. Z., Mondal, P. K., Sabr, S., 2013, Aerobic granulation for wastewater bioremediation: A review, Can. J. Chem. Eng., 91, 1045-1058.
  12. Kim, H. G., Ahn, D. H., Cho, E. H., Kim, H. Y., Ye, H. Y., Mun, J. S., 2016, A Study on the biological treatment of RO concentrate using aerobic granular sludge, J. Korean Soc. Environ. Eng., 38, 79-86.
  13. Li, X., Luo, J., Guo, G., Mackey, H. R., Hao, T., Chen, G., 2017, Seawater-based wastewater accelerates development of aerobic granular sludge: A Laboratory proof-of-concept, Water Res., 115, 210-219.
  14. Liu, Y., Liu, Z., Wang, F., Chen, Y., Kuschk, P., Wang, X., 2014, Regulation of aerobic granular sludge reformulation after granular sludge broken: Effect of Poly Aluminum Chloride (PAC), Bioresour. Technol., 158, 201-208.
  15. Liu, Y., Yang, S. F., Tay, J. H., 2003, Elemental compositions and characteristics of aerobic granules cultivated at different substrate N/C ratios, Appl. Microbiol. Biotechnol., 61, 556-561.
  16. Liu, Y. Q., Moy, B. Y. P., Tay, J. H., 2007, COD removal and nitrification of low-strength domestic wastewater in aerobic granular sludge sequencing batch reactors, Enzyme Microb. Technol., 42, 23-28.
  17. Mohan, S. V., Rao, N. C., Sarma, P. N., 2007, Simulated acid azo dye (acid black 210) wastewater treatment by periodic discontinuous batch mode operation under anoxic aerobic-anoxic microenvironment conditions, Ecol. Eng., 3, 242-250.
  18. Morgenroth, E., Sherden, T., van Loosdrecht, M. C. M., Heijnen, J. J., Wilderer, P. A., 1997, Aerobic granular sludge in a sequencing batch reactor, Water Res., 31, 3191-3140.
  19. Muda, K., Aris, A., Salim, M. R., Ibrahim, Z., van Loosdrecht, M. C. M., Ahmad, A., Nawahwi, M. Z., 2011, The effect of hydraulic retention time on granular sludge biomass in treating textile wastewater, Water Res., 45, 4711-4721.
  20. Pan, S., Tay, J. H., He, Y. X., Tay, S. T. L., 2004, The effect of hydraulic retention time on the stability of aerobically grown microbial granules, Lett. Appl. Microbiol., 38, 158-163.
  21. Rosman, N. H., Anuar, A. N., Chelliapan, S., Din, M. F. M., Ujang, Z., 2014, Characteristics and performance of aerobic granular sludge treating rubber wastewater at different hydraulic retention time, Bioresour. Technol., 161, 155-161.
  22. Su, K. Z., Ni, B. J., Yu, H. Q., 2013, Modeling and optimization of granulation process of activated sludge in sequencing batch reactors, Biotechnol. Bioeng., 110, 1312-1322.
  23. Szabo, E., Hermansson, M., Modin, O., Persson, F., Wilen, B. M., 2016, Effects of wash-out dynamics on nitrifying bacteria in aerobic granular sludge during start-up at gradually decreased settling time, Water, 8, 172.
  24. Tan, X., Acquah, I., Liu, H., Li, W., Tan, S., 2019, A Critical review on saline wastewater treatment by membrane bioreactor (MBR) from a microbial perspective, Chemosphere, 220, 1150-1162.
  25. Tay, J. H., Liu, Q. S., Liu, Y., 2001, Microscopic observation of aerobic granulation in sequential aerobic sludge blanket reactor, J. Appl. Microbiol., 91, 68-75.
  26. Wang, X., Chen, Z., Shen, J., Zhao, X., Kang, J., 2019, Impact of carbon to nitrogen ratio on the performance of aerobic granular reactor and microbial population dynamics during aerobic sludge granulation, Bioresour. Technol., 271, 258-265.
  27. Winkler, M. K. H., Bassin, J. P., Kleerebezem, R., de Bruin, L. M. M., van den Brand, T. P. H., van Loosdrecht, M. C. M., 2011, Selective sludge removal in a segregated aerobic granular biomass system as a strategy to control PAO GAO competition at high temperatures, Water Res., 45, 3291-3299.
  28. Yae, J. B., Ryu, J. H., Hong, S. W., Kim, H. G., Ahn, D. H., 2018, Applicability of the SBR Process using Aerobic Granular Sludge (AGS) in municipal wastewater treatment, J. Environ. Sci. Int., 27, 233-240.
  29. Yang, S. F., Li, X. Y., Yu, H. Q., 2008, Formation and characterisation of fungal and bacterial granules under different feeding alkalinity and pH conditions, Process Biochem., 43, 8-14.
  30. Zeng, R. J., Lemaire, R., Yuan, Z., Keller, J., 2003, Simultaneous nitrification, denitrification, and phosphorus removal in a lab-scale sequencing batch reactor, Biotechnol. Bioeng., 84, 170-178.