DOI QR코드

DOI QR Code

Numerical study on the relation between flow parameters and the focal point of fluidic lens

유체 렌즈의 초점과 유동 인자의 상관관계에 대한 수치해석

Lahooti, Mohsen;Kim, Daegyoum
;김대겸

  • Received : 2019.08.07
  • Accepted : 2019.08.28
  • Published : 2019.08.31

Abstract

In the present work, the effect of flow parameters such as volume flow rate on focal point of fluidic micro lens is investigated numerically. ANSYS Fluent is used for simulations, and the flow parameters and number of simulations are determined using the space filling method of design of experiment (DOE). Having determined the location of interfaces between fluids inside the micro lens which acts as the lens curvature, a ray tracking simulation on each case is performed using COMSOL Multiphysics to determine the focal point for each lens. These data are then used to provide a relation between flow parameters and the focal point of the lens.

Keywords

fluidic lens;immiscible fluids;focal point;ray tracking

References

  1. Li, H., Song, C., Luong, T.D., Nguyen, N.T. and Wong, T.N., 2012. "An electrokinetically tunable optofluidic bi-concave lens", Lab on a Chip, vol.12, no.19, pp.3680-3687.
  2. Nguyen, N.T., 2010. "Micro-optofluidic lenses: a review", Biomicrofluidics, vol.4, no.3, p.031501.
  3. Song, C., Nguyen, N.T., Yap, Y.F., Luong, T.D. and Asundi, A.K., 2011. "Multi-functional, optofluidic, in-plane, bi-concave lens: tuning light beam from focused to divergent", Microfluidics and nanofluidics, vol.10, no.3, pp.671-678.
  4. Rosenauer, M. and Vellekoop, M.J., 2009. "3D fluidic lens shaping-a multiconvex hydrodynamically adjustable optofluidic microlens", Lab on a Chip, vol.9, no.8, pp.1040-1042.
  5. Mao, X., Stratton, Z.I., Nawaz, A.A., Lin, S.C.S. and Huang, T.J., 2010. "Optofluidic tunable microlens by manipulating the liquid meniscus using a flared microfluidic structure", Biomicrofluidics, vol.4, no.4, p.043007.
  6. Dong, L. and Jiang, H., 2006. "p H-adaptive microlenses using pinned liquid-liquid interfaces actuated by p H-responsive hydrogel", Applied physics letters, vol.89, no.23, p.211120.
  7. Dong, L., Agarwal, A.K., Beebe, D.J. and Jiang, H., 2007. "Variable-focus liquid microlenses and microlens arrays actuated by thermoresponsive hydrogels", Advanced Materials, vol.19, no.3, pp.401-405.
  8. Tang, S.K., Stan, C.A. and Whitesides, G.M., 2008. "Dynamically reconfigurable liquid-core liquid-cladding lens in a microfluidic channel", Lab on a Chip, vol.8, no.3, pp.395-401.
  9. Mao, X., Lin, S.C.S., Lapsley, M.I., Shi, J., Juluri, B.K. and Huang, T.J., 2009. "Tunable Liquid Gradient Refractive Index (L-GRIN) lens with two degrees of freedom", Lab on a Chip, vol.9, no.14, pp.2050-2058.
  10. Mao, X., Waldeisen, J.R., Juluri, B.K. and Huang, T.J., 2007. "Hydrodynamically tunable optofluidic cylindrical microlens", Lab on a Chip, vol.7, no.10, pp.1303-1308.
  11. Dong, L. and Jiang, H., 2008. "Selective formation and removal of liquid microlenses at predetermined locations within microfluidics through pneumatic control", Journal of Microelectromechanical Systems, vol.17, no.2, pp.381-392.
  12. Chen, Q., Li, T., Li, Z., Long, J. and Zhang, X., 2018. "Optofluidic tunable lenses for in-plane light manipulation", Micromachines, vol.9, no.3, p.97..
  13. Li, L., Wang, J.H., Wang, Q.H. and Wu, S.T., 2018. "Displaceable and focus-tunable electrowetting optofluidic lens", Optics express, vol.26, no.6, pp.25839-25848.
  14. Mishra, K. and Mugele, F., 2016. "Numerical analysis of electrically tunable aspherical optofluidic lenses", Optics express, vol 24, no.13, pp. 14672-14681.
  15. Lima, N.C., Mishra, K. and Mugele, F., 2017. "Aberration control in adaptive optics: a numerical study of arbitrarily deformable liquid lenses", Optics express, vol25, no.6, pp.6700-6711.
  16. The Ray Optics Module User's guide, COMSOL Multiphysics