Comparative Investigation of Interfacial Characteristics between HfO2/Al2O3 and Al2O3/HfO2 Dielectrics on AlN/p-Ge Structure

  • Kim, Hogyoung (Department of Visual Optics, Seoul National University of Science and Technology (Seoultech)) ;
  • Yun, Hee Ju (Departmet of Materials Science and Engineering, Seoul National University of Science and Technology (Seoultech)) ;
  • Choi, Seok (Departmet of Materials Science and Engineering, Seoul National University of Science and Technology (Seoultech)) ;
  • Choi, Byung Joon (Departmet of Materials Science and Engineering, Seoul National University of Science and Technology (Seoultech))
  • Received : 2019.06.17
  • Accepted : 2019.08.06
  • Published : 2019.08.27


The electrical and interfacial properties of $HfO_2/Al_2O_3$ and $Al_2O_3/HfO_2$ dielectrics on AlN/p-Ge interface prepared by thermal atomic layer deposition are investigated by capacitance-voltage(C-V) and current-voltage(I-V) measurements. In the C-V measurements, humps related to mid-gap states are observed when the ac frequency is below 100 kHz, revealing lower mid-gap states for the $HfO_2/Al_2O_3$ sample. Higher frequency dispersion in the inversion region is observed for the $Al_2O_3/HfO_2$ sample, indicating the presence of slow interface states A higher interface trap density calculated from the high-low frequency method is observed for the $Al_2O_3/HfO_2$ sample. The parallel conductance method, applied to the accumulation region, shows border traps at 0.3~0.32 eV for the $Al_2O_3/HfO_2$ sample, which are not observed for the $Al_2O_3/HfO_2$ sample. I-V measurements show a reduction of leakage current of about three orders of magnitude for the $HfO_2/Al_2O_3$ sample. Using the Fowler-Nordheim emission, the barrier height is calculated and found to be about 1.08 eV for the $HfO_2/Al_2O_3$ sample. Based on these results, it is suggested that $HfO_2/Al_2O_3$ is a better dielectric stack than $Al_2O_3/HfO_2$ on AlN/p-Ge interface.


Supported by : National Research Foundation of Korea (NRF)


  1. P. Lim, D. Chi, X. Wang and Y. Yeo, Appl. Phys. Lett., 101, 172103 (2012).
  2. K. Prabhakaran, F. Maeda, Y. Watanabe and T. Ogino, Appl. Phys. Lett., 76, 2244 (2000).
  3. F. Bin, L. Xia, F. Xi, M. Fei, F. Jiao and H. Yue, Chin. Phys. B, 22, 037702 (2013).
  4. Y. Seo, C. Kim, T. Lee, W. Hwang, H. Yu, Y. Choi and B. Cho, IEEE Trans. Electron Dev., 64, 3998 (2017).
  5. Q. Xie, S. Deng, M. Schaekers, D. Lin, M. Caymax, A. Delabie, X. Qu, Y. Jiang, D. Deduytsche and C. Detavernier, Semicond. Sci. Technol., 27, 074012 (2012).
  6. Y. Fukuda, T. Ueno, S. Hirono and S. Hashimoto, Jpn. J. Appl. Phys., 44, 6981 (2005).
  7. M. Perego, G. Scarel, M. Fanciulli, I. Fedushkin and A. Skatova, Appl. Phys. Lett., 90, 162115 (2007).
  8. D. Kuzum, T. Krishnamohan, A. Nainani, Y. Sun, P. Pianetta, H. Wong and K. Saraswat, IEEE Trans. Electron Dev., 58, 59 (2011).
  9. R. Zhang, P.-C. Huang, J.-C. Lin, N. Taoka, M. Takenaka and S. Takagi, IEEE Trans. Electron Dev., 60, 927 (2013).
  10. D. Kuzum, T. Krishnamohan, A. Pethe, A. Okyay, Y. Oshima, Y. Sun, J. McVittie, P. Pianetta, P. McIntyre and K. Saraswat, IEEE Electron Dev. Lett., 29, 328 (2008).
  11. H. Li, L. Lin and J. Robertson, Appl. Phys. Lett., 101, 052903 (2012).
  12. H. Li, Y. Guo and J. Robertson, Microelectron. Eng., 147, 168 (2015).
  13. R. Zhang, T. Iwasaki, N. Taoka, M. Takenaka and S. Takagi, J. Electrochem. Soc., 158, G178 (2011).
  14. H. Kim, P. McIntyre, C. Chui, K. Saraswat and M. Cho, Appl. Phys. Lett., 85, 2902 (2004).
  15. X. Li, Y. Cao, A. Li, H. Li and D. Wu, ECS Solid State Lett., 1, N10 (2012).
  16. I. Krylov, L. Kornblum, A. Gavrilov, D. Ritter and M. Eizenberg, Appl. Phys. Lett., 100, 173508 (2012).
  17. D. Misra, Electrochem. Soc. Interface, 20, 47 (2011).
  18. M. Usman, C. Henkel and A. Hall'en, ECS J. Solid State Sci. Technol., 2, N3087 (2013).
  19. G. Wilk, M. Green, M. Ho, B. Busch, T. Sorsch, F. Klemens, B. Brijs, R. van Dover, A. Kornblit, T. Gustafsson, E. Garfunkel, S. Hillenius, D. Monroe, P. Kalavade and M. Hergenrother, Tech. Dig. VLSI Symp., p. 88 (2002).
  20. J. Kerr, Strengths of Chemical bonds, in CRC Handbook of Chemistry and Physics, p. 9-54, ed. D. R. Lide, CRC Press, Boca Raton, FL (2005).
  21. R. Engel-Herbert, Y. Hwang and S. Stemmer, J. Appl. Phys., 108, 124101 (2010).
  22. F. Bellenger, M. Houssa, A. Delabie, V. Afanasiev, T. Conard, M. Caymax, M. Meuris, K. Meyer and M. Heyns, J. Electrochem. Soc., 155, G33 (2008).
  23. Y. Choi, H. Lim, S. Lee, S. Suh, J. Kim, H. Jung, S. Park, J. Lee, S. Kim, C. Hwang and H. Kim, ACS. Appl, Mater. Interfaces, 4, 7885 (2014)
  24. H. Seo, F. Bellenger, K. Chung, M. Houssa, M. Meuris, M. Heyns and G. Lucovsky, J. Appl. Phys., 106, 044909 (2009).
  25. Y. Yuan, L. Wang, B. Yu, B. Shin, J. Ahn, P. McIntyre, P. Asbeck, M. Rodwell and Y. Taur, IEEE Electron Dev. Lett., 32, 485 (2011).
  26. D. Schroder, Semiconductor Material and Device Characterization, p. 1, Wiley, New York, USA (2005).
  27. S. Gupta, E. Simoen, R. Loo, O. Madia, D. Lin, C. Merckling, Y. Shimura, T. Conard, J. Lauwaert, H. Vrielinck and M. Heyns, ACS Appl. Mater. Interfaces, 8, 13181 (2016).
  28. D. Wang, S. Kojima, K. Sakamoto, K. Yamamoto and H. Nakashima, J. Appl. Phys., 112, 083707 (2012).
  29. G. He, L. Zhang, G. Meng, G. Li, Q. Fang and J. Zhang, J. Appl. Phys., 102, 094103 (2007).
  30. F. Tian and E. Chor, J. Electrochem. Soc., 157, H557 (2010).
  31. E. Miyazaki, Y. Goda, S. Kishimoto and T. Mizutani, Solid-State Electron., 62, 152 (2011).
  32. J. Robertson and B. Falabretti, J. Appl. Phys., 100, 014111 (2006).
  33. D. Deen, S. Binari, D. Storm, D. Katzer, J. Roussos, J. Hackley and T. Gougousi, Electron. Lett., 45, 423 (2009).
  34. G. Dutta, N. DasGupta and A. DasGupta, IEEE Trans. Electron Dev., 64, 3609 (2017).