B20 Crystal Structure and Electromagnetic Property of MnGe and MnSi

B20 결정구조와 MnGe와 MnSi의 전자구조 및 자기적 특성

  • 정태성 (한신대학교 평화교양대학)
  • Received : 2019.06.29
  • Accepted : 2019.07.19
  • Published : 2019.08.27


The magnetic properties and electronic structures of the B20 crystal structure MnGe and MnSi were investigated using the density functional theory with local density approximation. The low symmetry of the B20 crystal structure plays a very important role to make electromagnetic characteristics of these materials. The important result of the calculations is that it can be observed the appearance of a pair of gaps in the density of states near the Fermi level in both compounds. These features are results from d-band splitting by the low symmetry of the crystal field from B20 crystal structure. It can be seen that there is half-metallic characteristics from the density of states in both compounds. The calculation shows that the value of magnetic moment of MnGe is 5 times bigger than that of MnSi even though they have same crystal structure. The electronic structures of paramagnetic case have a very narrow indirect gap just above the Fermi level in both compounds. These gaps acquire some significance in establishing the stability of the ferromagnetic states within the local density approximation. Calculation shows that the Mn 3d character dominates the density of states near the Fermi level in both materials.


Supported by : Hanshin University


  1. Z. A. Xu, N. P. Ong, Y. Wang, T. Kakeshita and S. Uchida, Nature, 406, 486 (2000).
  2. J. F. Ditusa, S. B. Zhang, K. Yamaura, Y. Xiong, J. C. Prestigiacomo, B. W. Fulfer, P. W. Adams, M. I. Brickson. D. A. Browne, C. Capan and Z. Fisk, J. Chan, Phys. Rev. B, 90, 144404 (2014).
  3. O. L. Makarova, A.V. Tsvyashchenko, G. Andre, F. Porche, L. N. Fomicheva, N. Rey and I. Mirebeau, Phys. Rev. B, 85, 205205 (2012).
  4. O. Nakanishi, A. Yanase and A. Hasegawa, J. Magn. Magn. Mater., 15, 879 (1980).
  5. P. Bak and M. H. Jensen, J. Phys. C, 13, L881 (1980).
  6. K. Koepernik and H. Eschrig, Phys. Rev. B, 59, 1743 (1999).
  7. H. Eschrig, K. Koepernik and I. Chaplygin, J. Solid State Chem., 176, 482 (2003).
  8. J. P. Perdew and Y. Wang, Phys. Rev. B, 45, 13244 (1992).
  9. C. Pfeiderer, D. Reznik, L. Pintschovius, H. V. Lohneysen, M. Garst and A. Rosch, Nature, 427, 227 (2004).
  10. X. Z. Yu, Y. Onose, N. Kanazawa, J. H. Park, J. H. Han, Y. Matsui, N. Nagaosa and Y. Tokura, Nature, 465, 901 (2010).
  11. M. Azhar and M. Mostovoy, Phys. Rev. Lett., 118, 027203 (2017).
  12. A. O. Leonov and M. Mostovoy, Nature Comm., 6, 8275 (2015).
  13. S. Heinz, K. Bergmann, M. Menzel, J. Brede, A. Kubetzka, R. Wiesendanger, G. Bilhmayer and S. Blugel, Nature Physics, 7, 713 (2011).
  14. N. Romming, C. Hanneken, M. Menzel, J. E. Bickel, B. Wolter, K. v. Bergmann, A. Kubetzke and R. Wiesendanger, Science, 341, 636 (2013).
  15. A. Neubauer, C. Pfeiderer, B. Binz, A. Rosch, R. Ritz, P. G. Naklowitz and P. Boni, Phys. Rev. Lett., 102, 186602 (2009).
  16. C. Pfeiderer and U. K. Rosler, Nature, 447, 157 (2007).
  17. N. Nagaosa and Y. Tokura, Nat. Nanotechnol., 8, 899 (2013).
  18. E. Altynbaez, S. -A. Siegfried, V. Dyadkin, E. Moskvin, D. Menzel, A. Heinemann, C. Dewhurst, F. Fomicheva, A. Tsvyashchenko and S. Grigoriev, Phys. Rev. B, 90, 174420 (2014).
  19. R. Ritz, M. Halder, M. Wagner, C. Franz, A. Bauer and C. Pfleiderer, Nature, 497, 231 (2013).