Development of Ultra-Thin TiO2 Coated WO3 Inverse Opal Photoelectrode for Dye-Sensitized Solar Cells

염료감응형 태양전지로의 응용을 위한 얇은 TiO2가 코팅 된 WO3 역오팔 광전극의 개발

  • Arunachalam, Maheswari (Department of Chemistry, Chonnam National University) ;
  • Kwag, Seoui (Gwangju Science Academy For the Gifted) ;
  • Lee, Inho (Gwangju Science Academy For the Gifted) ;
  • Kim, Chung Soo (Testing Analysis Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Sang-Kwon (Department of Chemistry Education, Chonnam National University) ;
  • Kang, Soon Hyung (Department of Chemistry Education, Chonnam National University)
  • ;
  • 곽서의 (과학영재학교 광주과학고등학교) ;
  • 이인호 (과학영재학교 광주과학고등학교) ;
  • 김청수 (한국세라믹기술원 시험분석센터) ;
  • 이상권 (전남대학교 화학교육과) ;
  • 강순형 (전남대학교 화학교육과)
  • Received : 2019.07.10
  • Accepted : 2019.07.29
  • Published : 2019.08.27


In this study, we prepare pure $WO_3$ inverse opal(IO) film with a thickness of approximately $3{\mu}m$ by electrodeposition, and an ultra-thin $TiO_2$ layer having a thickness of 2 nm is deposited on $WO_3$ IO film by atomic layer deposition. Both sets of photoelectrochemical properties are evaluated after developing dye-sensitized solar cells(DSSCs). In addition, morphological, crystalline and optical properties of the developed films are evaluated through field-emission scanning electron microscopy(FE-SEM), High-resolution transmission electron microscopy(HR-TEM), X-ray diffraction(XRD) and UV/visible/infrared spectrophotometry. In particular, pure $WO_3$ IO based DSSCs show low $V_{OC}$, $J_{SC}$ and fill factor of 0.25 V, $0.89mA/cm^2$ and 18.9 %, achieving an efficiency of 0.04 %, whereas the $TiO_2/WO_3$ IO based DSSCs exhibit $V_{OC}$, $J_{SC}$ and fill factor of 0.57 V, $1.18mA/cm^2$ and 50.1 %, revealing an overall conversion efficiency of 0.34 %, probably attributable to the high dye adsorption and suppressed charge recombination reaction.


Supported by : National Research Foundation of Korea (NRF)


  1. B. O'Regan and M. Gratzel, Nature, 353, 737 (1991).
  2. A. Yella, H. -W. Lee, H. N. Tsao, C. Yi, S. M. Zakeeruddin and M. Gratzel, Science, 334, 629 (2011).
  3. M. McCune, W. Zhang and Y. Deng, Nano Lett., 12, 3656 (2012).
  4. R. Ghosh, M. K. Brennaman, T. Uher, M.-R. Ok, E. T. Samulski, L. E. McNeil, T. J. Meyer and R. Lopez, ACS Appl. Mater. Interfaces, 3, 10 (2010).
  5. S. Burnside, J. -E. Moser, K. Brooks, M. Gratzel and D. Cahen, J. Phys. Chem. B, 103, 9328 (1999).
  6. H. Zheng, Y. Tachibana and K. Kalantar-zadeh, Langmuir, 26, 19148 (2010).
  7. S. H. Kang, S. -H. Choi, M. -S. Kang, J. -Y. Kim, H. -S. Kim, T. Hyeon and Y. -E. Sung, Adv. Mater., 20, 54 (2008).
  8. Y. O. Kim, S. -H. Yu, K. -S. Ahn, S. K. Lee and S. H. Kang, J. Electroanal. Chem., 752, 25 (2015).
  9. H. S. Lee, R. Kubrin, R. Zierold, A. Y. Petrov, K. Nielsch, G. A. Schneider and M. Eich, Opt. Mater. Express, 3, 1007 (2013).
  10. G. Yun, M. Arunachalam and S. H. Kang, J. Phys. Chem. C, 120, 5906 (2016).
  11. F. M. Rajab, J. Miner. Mater. Charact. Eng., 2, 169 (2014).
  12. J. Gong, K. Sumathy, Q. Qiao and Z. Zhou, Renew. Sustainable Energy Rev., 68, 234 (2017).
  13. M. D. Brown, T. Suteewong, R. S. S. Kumar, V. D'Innocenzo, A. Petrozza, M. M. Lee, U. Wiesner and H. J. Snaith, Nano Lett., 11, 438 (2011).
  14. X. Hu and H. Wang, Front. Optoelectronics, 11, 285 (2018).